A mimetic discretization of elliptic obstacle problems
Authors:
Paola F. Antonietti, Lourenco Beirão da Veiga and Marco Verani
Journal:
Math. Comp. 82 (2013), 1379-1400
MSC (2010):
Primary 65N30; Secondary 35R35
DOI:
https://doi.org/10.1090/S0025-5718-2013-02670-1
Published electronically:
February 20, 2013
MathSciNet review:
3042568
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We develop a Finite Element Method (FEM) which can adopt very general meshes with polygonal elements for the numerical approximation of elliptic obstacle problems. These kinds of methods are also known as mimetic discretization schemes, which stem from the Mimetic Finite Difference (MFD) method. The first-order convergence estimate in a suitable (mesh-dependent) energy norm is established. Numerical experiments confirming the theoretical results are also presented.
- 1. P.F. Antonietti, L. Beirão da Veiga, and M. Verani, A mimetic discretization of elliptic obstacle problems, Tech. report, MOX, Dipartimento di Matematica, Politecnico di Milano, 2010, http://mox.polimi.it/it/progetti/pubblicazioni/.
- 2. Lourenco Beirão Da Veiga, A mimetic discretization method for linear elasticity, M2AN Math. Model. Numer. Anal. 44 (2010), no. 2, 231–250. MR 2655949, https://doi.org/10.1051/m2an/2010001
- 3. L. Beirão da Veiga, V. Gyrya, K. Lipnikov, and G. Manzini, Mimetic finite difference method for the Stokes problem on polygonal meshes, J. Comput. Phys. 228 (2009), no. 19, 7215–7232. MR 2568590, https://doi.org/10.1016/j.jcp.2009.06.034
- 4. L. Beirão da Veiga, K. Lipnikov, and G. Manzini, Convergence analysis of the high-order mimetic finite difference method, Numer. Math. 113 (2009), no. 3, 325–356. MR 2534128, https://doi.org/10.1007/s00211-009-0234-6
- 5. Lourenço Beirão da Veiga and Gianmarco Manzini, An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems, Internat. J. Numer. Methods Engrg. 76 (2008), no. 11, 1696–1723. MR 2468392, https://doi.org/10.1002/nme.2377
- 6. L. Beirão da Veiga and D. Mora, A mimetic discretization of the Reissner-Mindlin plate bending problem, Numer. Math. 117 (2011), no. 3, 425–462. MR 2772415, https://doi.org/10.1007/s00211-010-0358-8
- 7. Haïm Brézis, Problèmes unilatéraux, J. Math. Pures Appl. (9) 51 (1972), 1–168. MR 428137
- 8. Haïm R. Brezis and Guido Stampacchia, Sur la régularité de la solution d’inéquations elliptiques, Bull. Soc. Math. France 96 (1968), 153–180 (French). MR 239302
- 9. Franco Brezzi, Annalisa Buffa, and Konstantin Lipnikov, Mimetic finite differences for elliptic problems, M2AN Math. Model. Numer. Anal. 43 (2009), no. 2, 277–295. MR 2512497, https://doi.org/10.1051/m2an:2008046
- 10. Franco Brezzi, William W. Hager, and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, Numer. Math. 28 (1977), no. 4, 431–443. MR 448949, https://doi.org/10.1007/BF01404345
- 11. Franco Brezzi, Konstantin Lipnikov, and Mikhail Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal. 43 (2005), no. 5, 1872–1896. MR 2192322, https://doi.org/10.1137/040613950
- 12. Franco Brezzi, Konstantin Lipnikov, Mikhail Shashkov, and Valeria Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37-40, 3682–3692. MR 2339994, https://doi.org/10.1016/j.cma.2006.10.028
- 13. Franco Brezzi, Konstantin Lipnikov, and Valeria Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci. 15 (2005), no. 10, 1533–1551. MR 2168945, https://doi.org/10.1142/S0218202505000832
- 14. Andrea Cangiani and Gianmarco Manzini, Flux reconstruction and solution post-processing in mimetic finite difference methods, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 9-12, 933–945. MR 2376968, https://doi.org/10.1016/j.cma.2007.09.019
- 15. Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
- 16. C. W. Cryer, Successive overrelaxation methods for solving linear complementarity problems arising from free boundary problems, Free boundary problems, Vol. I (Pavia, 1979) Ist. Naz. Alta Mat. Francesco Severi, Rome, 1980, pp. 109–131. MR 630716
- 17. Todd Dupont and Ridgway Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441–463. MR 559195, https://doi.org/10.1090/S0025-5718-1980-0559195-7
- 18. C. M. Elliott and J. R. Ockendon, Weak and variational methods for moving boundary problems, Research Notes in Mathematics, vol. 59, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 650455
- 19. Richard S. Falk, Error estimates for the approximation of a class of variational inequalities, Math. Comput. 28 (1974), 963–971. MR 0391502, https://doi.org/10.1090/S0025-5718-1974-0391502-8
- 20. Avner Friedman, Variational principles and free-boundary problems, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. A Wiley-Interscience Publication. MR 679313
- 21. Roland Glowinski, Jacques-Louis Lions, and Raymond Trémolières, Numerical analysis of variational inequalities, Studies in Mathematics and its Applications, vol. 8, North-Holland Publishing Co., Amsterdam-New York, 1981. Translated from the French. MR 635927
- 22. Patrick Jaillet, Damien Lamberton, and Bernard Lapeyre, Variational inequalities and the pricing of American options, Acta Appl. Math. 21 (1990), no. 3, 263–289. MR 1096582, https://doi.org/10.1007/BF00047211
- 23. David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications, Classics in Applied Mathematics, vol. 31, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. Reprint of the 1980 original. MR 1786735
- 24. K. Lipnikov, J. D. Moulton, and D. Svyatskiy, A multilevel multiscale mimetic (𝑀³) method for two-phase flows in porous media, J. Comput. Phys. 227 (2008), no. 14, 6727–6753. MR 2435429, https://doi.org/10.1016/j.jcp.2008.03.029
- 25. Konstantin Lipnikov, Mikhail Shashkov, and Ivan Yotov, Local flux mimetic finite difference methods, Numer. Math. 112 (2009), no. 1, 115–152. MR 2481532, https://doi.org/10.1007/s00211-008-0203-5
- 26. Ricardo H. Nochetto, Kunibert G. Siebert, and Andreas Veeser, Pointwise a posteriori error control for elliptic obstacle problems, Numer. Math. 95 (2003), no. 1, 163–195. MR 1993943, https://doi.org/10.1007/s00211-002-0411-3
- 27. José-Francisco Rodrigues, Obstacle problems in mathematical physics, North-Holland Mathematics Studies, vol. 134, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 114. MR 880369
Retrieve articles in Mathematics of Computation with MSC (2010): 65N30, 35R35
Retrieve articles in all journals with MSC (2010): 65N30, 35R35
Additional Information
Paola F. Antonietti
Affiliation:
MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
Email:
paola.antonietti@polimi.it
Lourenco Beirão da Veiga
Affiliation:
Dipartimento di Matematica, Università di Milano, Via Saldini 50, I-20133 Milano, Italy
Email:
lourenco.beirao@unimi.it
Marco Verani
Affiliation:
MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
Email:
marco.verani@polimi.it
DOI:
https://doi.org/10.1090/S0025-5718-2013-02670-1
Keywords:
Mimetic Finite Difference Methods,
obstacle problems
Received by editor(s):
May 10, 2010
Received by editor(s) in revised form:
April 26, 2011
Published electronically:
February 20, 2013
Additional Notes:
The first and the third authors were supported in part by the Italian research project PRIN 2008: “Analysis and development of advanced numerical methods for PDEs”.
Article copyright:
© Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.