A mimetic discretization of elliptic obstacle problems
HTML articles powered by AMS MathViewer
- by Paola F. Antonietti, Lourenco Beirão da Veiga and Marco Verani;
- Math. Comp. 82 (2013), 1379-1400
- DOI: https://doi.org/10.1090/S0025-5718-2013-02670-1
- Published electronically: February 20, 2013
- PDF | Request permission
Abstract:
We develop a Finite Element Method (FEM) which can adopt very general meshes with polygonal elements for the numerical approximation of elliptic obstacle problems. These kinds of methods are also known as mimetic discretization schemes, which stem from the Mimetic Finite Difference (MFD) method. The first-order convergence estimate in a suitable (mesh-dependent) energy norm is established. Numerical experiments confirming the theoretical results are also presented.References
- P.F. Antonietti, L. Beirão da Veiga, and M. Verani, A mimetic discretization of elliptic obstacle problems, Tech. report, MOX, Dipartimento di Matematica, Politecnico di Milano, 2010, http://mox.polimi.it/it/progetti/pubblicazioni/.
- Lourenco Beirão Da Veiga, A mimetic discretization method for linear elasticity, M2AN Math. Model. Numer. Anal. 44 (2010), no. 2, 231–250. MR 2655949, DOI 10.1051/m2an/2010001
- L. Beirão da Veiga, V. Gyrya, K. Lipnikov, and G. Manzini, Mimetic finite difference method for the Stokes problem on polygonal meshes, J. Comput. Phys. 228 (2009), no. 19, 7215–7232. MR 2568590, DOI 10.1016/j.jcp.2009.06.034
- L. Beirão da Veiga, K. Lipnikov, and G. Manzini, Convergence analysis of the high-order mimetic finite difference method, Numer. Math. 113 (2009), no. 3, 325–356. MR 2534128, DOI 10.1007/s00211-009-0234-6
- Lourenço Beirão da Veiga and Gianmarco Manzini, An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems, Internat. J. Numer. Methods Engrg. 76 (2008), no. 11, 1696–1723. MR 2468392, DOI 10.1002/nme.2377
- L. Beirão da Veiga and D. Mora, A mimetic discretization of the Reissner-Mindlin plate bending problem, Numer. Math. 117 (2011), no. 3, 425–462. MR 2772415, DOI 10.1007/s00211-010-0358-8
- Haïm Brézis, Problèmes unilatéraux, J. Math. Pures Appl. (9) 51 (1972), 1–168. MR 428137
- Haïm R. Brezis and Guido Stampacchia, Sur la régularité de la solution d’inéquations elliptiques, Bull. Soc. Math. France 96 (1968), 153–180 (French). MR 239302
- Franco Brezzi, Annalisa Buffa, and Konstantin Lipnikov, Mimetic finite differences for elliptic problems, M2AN Math. Model. Numer. Anal. 43 (2009), no. 2, 277–295. MR 2512497, DOI 10.1051/m2an:2008046
- Franco Brezzi, William W. Hager, and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, Numer. Math. 28 (1977), no. 4, 431–443. MR 448949, DOI 10.1007/BF01404345
- Franco Brezzi, Konstantin Lipnikov, and Mikhail Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal. 43 (2005), no. 5, 1872–1896. MR 2192322, DOI 10.1137/040613950
- Franco Brezzi, Konstantin Lipnikov, Mikhail Shashkov, and Valeria Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37-40, 3682–3692. MR 2339994, DOI 10.1016/j.cma.2006.10.028
- Franco Brezzi, Konstantin Lipnikov, and Valeria Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci. 15 (2005), no. 10, 1533–1551. MR 2168945, DOI 10.1142/S0218202505000832
- Andrea Cangiani and Gianmarco Manzini, Flux reconstruction and solution post-processing in mimetic finite difference methods, Comput. Methods Appl. Mech. Engrg. 197 (2008), no. 9-12, 933–945. MR 2376968, DOI 10.1016/j.cma.2007.09.019
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- C. W. Cryer, Successive overrelaxation methods for solving linear complementarity problems arising from free boundary problems, Free boundary problems, Vol. I (Pavia, 1979) Ist. Naz. Alta Mat. Francesco Severi, Rome, 1980, pp. 109–131. MR 630716
- Todd Dupont and Ridgway Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441–463. MR 559195, DOI 10.1090/S0025-5718-1980-0559195-7
- C. M. Elliott and J. R. Ockendon, Weak and variational methods for moving boundary problems, Research Notes in Mathematics, vol. 59, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 650455
- Richard S. Falk, Error estimates for the approximation of a class of variational inequalities, Math. Comput. 28 (1974), 963–971. MR 391502, DOI 10.1090/S0025-5718-1974-0391502-8
- Avner Friedman, Variational principles and free-boundary problems, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1982. Pure and Applied Mathematics. MR 679313
- Roland Glowinski, Jacques-Louis Lions, and Raymond Trémolières, Numerical analysis of variational inequalities, Studies in Mathematics and its Applications, vol. 8, North-Holland Publishing Co., Amsterdam-New York, 1981. Translated from the French. MR 635927
- Patrick Jaillet, Damien Lamberton, and Bernard Lapeyre, Variational inequalities and the pricing of American options, Acta Appl. Math. 21 (1990), no. 3, 263–289. MR 1096582, DOI 10.1007/BF00047211
- David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications, Classics in Applied Mathematics, vol. 31, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. Reprint of the 1980 original. MR 1786735, DOI 10.1137/1.9780898719451
- K. Lipnikov, J. D. Moulton, and D. Svyatskiy, A multilevel multiscale mimetic $(\textrm {M}^3)$ method for two-phase flows in porous media, J. Comput. Phys. 227 (2008), no. 14, 6727–6753. MR 2435429, DOI 10.1016/j.jcp.2008.03.029
- Konstantin Lipnikov, Mikhail Shashkov, and Ivan Yotov, Local flux mimetic finite difference methods, Numer. Math. 112 (2009), no. 1, 115–152. MR 2481532, DOI 10.1007/s00211-008-0203-5
- Ricardo H. Nochetto, Kunibert G. Siebert, and Andreas Veeser, Pointwise a posteriori error control for elliptic obstacle problems, Numer. Math. 95 (2003), no. 1, 163–195. MR 1993943, DOI 10.1007/s00211-002-0411-3
- José-Francisco Rodrigues, Obstacle problems in mathematical physics, North-Holland Mathematics Studies, vol. 134, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 114. MR 880369
Bibliographic Information
- Paola F. Antonietti
- Affiliation: MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
- Email: paola.antonietti@polimi.it
- Lourenco Beirão da Veiga
- Affiliation: Dipartimento di Matematica, Università di Milano, Via Saldini 50, I-20133 Milano, Italy
- MR Author ID: 696855
- Email: lourenco.beirao@unimi.it
- Marco Verani
- Affiliation: MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
- MR Author ID: 704488
- Email: marco.verani@polimi.it
- Received by editor(s): May 10, 2010
- Received by editor(s) in revised form: April 26, 2011
- Published electronically: February 20, 2013
- Additional Notes: The first and the third authors were supported in part by the Italian research project PRIN 2008: “Analysis and development of advanced numerical methods for PDEs”.
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 82 (2013), 1379-1400
- MSC (2010): Primary 65N30; Secondary 35R35
- DOI: https://doi.org/10.1090/S0025-5718-2013-02670-1
- MathSciNet review: 3042568