Heuristic parameter selection based on functional minimization: Optimality and model function approach
HTML articles powered by AMS MathViewer
- by Shuai Lu and Peter Mathé;
- Math. Comp. 82 (2013), 1609-1630
- DOI: https://doi.org/10.1090/S0025-5718-2013-02674-9
- Published electronically: February 21, 2013
- PDF | Request permission
Abstract:
We analyze some parameter choice strategies in regularization of inverse problems, in particular, the (modified) L-curve method and a variant of the Hanke–Raus type rule. These are heuristic rules, free of the noise level, and they are based on minimization of some functional. We analyze these functionals, and we prove some optimality results under general smoothness conditions. We also devise some numerical approach for finding the minimizers, which uses model functions. Numerical experiments indicate that this is an efficient numerical procedure.References
- A. B. Bakushinskiĭ, Remarks on the choice of regularization parameter from quasioptimality and relation tests, Zh. Vychisl. Mat. i Mat. Fiz. 24 (1984), no. 8, 1258–1259 (Russian). MR 760252
- Frank Bauer and Stefan Kindermann, The quasi-optimality criterion for classical inverse problems, Inverse Problems 24 (2008), no. 3, 035002, 20. MR 2421956, DOI 10.1088/0266-5611/24/3/035002
- Fermín S. Viloche Bazán, Fixed-point iterations in determining the Tikhonov regularization parameter, Inverse Problems 24 (2008), no. 3, 035001, 15. MR 2421955, DOI 10.1088/0266-5611/24/3/035001
- Fermín S. Viloche Bazán and Juliano B. Francisco, An improved fixed-point algorithm for determining a Tikhonov regularization parameter, Inverse Problems 25 (2009), no. 4, 045007, 16. MR 2482158, DOI 10.1088/0266-5611/25/4/045007
- Heinz W. Engl, Martin Hanke, and Andreas Neubauer, Regularization of inverse problems, Mathematics and its Applications, vol. 375, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1408680
- U. Hämarik and T. Raus, On the choice of the regularization parameter in ill-posed problems with approximately given noise level of data, J. Inverse Ill-Posed Probl. 14 (2006), no. 3, 251–266. MR 2241272, DOI 10.1163/156939406777340928
- Martin Hanke and Toomas Raus, A general heuristic for choosing the regularization parameter in ill-posed problems, SIAM J. Sci. Comput. 17 (1996), no. 4, 956–972. MR 1395358, DOI 10.1137/0917062
- Per Christian Hansen, Analysis of discrete ill-posed problems by means of the ${\mathsf L}$-curve, SIAM Rev. 34 (1992), no. 4, 561–580. MR 1193012, DOI 10.1137/1034115
- \leavevmode\vrule height 2pt depth -1.6pt width 23pt, Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems, Numer. Algorithms, 6 (1994), pp. 1–35.
- Yi Heng, Shuai Lu, Adel Mhamdi, and Sergei V. Pereverzev, Model functions in the modified $L$-curve method—case study: the heat flux reconstruction in pool boiling, Inverse Problems 26 (2010), no. 5, 055006, 13. MR 2647148, DOI 10.1088/0266-5611/26/5/055006
- B. Hofmann, P. Mathé, and M. Schieck, Modulus of continuity for conditionally stable ill-posed problems in Hilbert space, J. Inverse Ill-Posed Probl. 16 (2008), no. 6, 567–585. MR 2458286, DOI 10.1515/JIIP.2008.030
- K. Ito and K. Kunisch, On the choice of the regularization parameter in nonlinear inverse problems, SIAM J. Optim. 2 (1992), no. 3, 376–404. MR 1172497, DOI 10.1137/0802019
- Stefan Kindermann and Andreas Neubauer, On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization, Inverse Probl. Imaging 2 (2008), no. 2, 291–299. MR 2395145, DOI 10.3934/ipi.2008.2.291
- Karl Kunisch and Jun Zou, Iterative choices of regularization parameters in linear inverse problems, Inverse Problems 14 (1998), no. 5, 1247–1264. MR 1654635, DOI 10.1088/0266-5611/14/5/010
- Charles L. Lawson and Richard J. Hanson, Solving least squares problems, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974. MR 366019
- S. Lu, S. V. Pereverzev, and U. Tautenhahn, Dual regularized total least squares and multi-parameter regularization, Comput. Methods Appl. Math. 8 (2008), no. 3, 253–262. MR 2641318, DOI 10.2478/cmam-2008-0018
- Peter Mathé, Saturation of regularization methods for linear ill-posed problems in Hilbert spaces, SIAM J. Numer. Anal. 42 (2004), no. 3, 968–973. MR 2112789, DOI 10.1137/S0036142903420947
- Teresa Regińska, A regularization parameter in discrete ill-posed problems, SIAM J. Sci. Comput. 17 (1996), no. 3, 740–749. MR 1384263, DOI 10.1137/S1064827593252672
- Jianli Xie and Jun Zou, An improved model function method for choosing regularization parameters in linear inverse problems, Inverse Problems 18 (2002), no. 3, 631–643. MR 1910192, DOI 10.1088/0266-5611/18/3/307
Bibliographic Information
- Shuai Lu
- Affiliation: School of Mathematical Sciences, Fudan University, Shanghai 200433, China
- Email: slu@fudan.edu.cn
- Peter Mathé
- Affiliation: Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany
- Email: mathe@wias-berlin.de
- Received by editor(s): March 15, 2010
- Received by editor(s) in revised form: October 7, 2011
- Published electronically: February 21, 2013
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 82 (2013), 1609-1630
- MSC (2010): Primary 65J20; Secondary 47A52
- DOI: https://doi.org/10.1090/S0025-5718-2013-02674-9
- MathSciNet review: 3042578