On the spectral vanishing viscosity method for periodic fractional conservation laws
Authors:
Simone Cifani and Espen R. Jakobsen
Journal:
Math. Comp. 82 (2013), 1489-1514
MSC (2010):
Primary 65M70, 35K59, 35R09; Secondary 65M15, 65M12, 35K57, 35R11
DOI:
https://doi.org/10.1090/S0025-5718-2013-02690-7
Published electronically:
March 19, 2013
MathSciNet review:
3042572
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We introduce and analyze a spectral vanishing viscosity approximation of periodic fractional conservation laws. The fractional part of these equations can be a fractional Laplacian or other non-local operators that are generators of pure jump Lévy processes. To accommodate for shock solutions, we first extend to the periodic setting the Kružkov-Alibaud entropy formulation and prove well-posedness. Then we introduce the numerical method, which is a non-linear Fourier Galerkin method with an additional spectral viscosity term. This type of approximation was first introduced by Tadmor for pure conservation laws. We prove that this non-monotone method converges to the entropy solution of the problem, that it retains the spectral accuracy of the Fourier method, and that it diagonalizes the fractional term reducing dramatically the computational cost induced by this term. We also derive a robust -error estimate, and provide numerical experiments for the fractional Burgers' equation.
- 1. Nathaël Alibaud, Entropy formulation for fractal conservation laws, J. Evol. Equ. 7 (2007), no. 1, 145–175. MR 2305729, https://doi.org/10.1007/s00028-006-0253-z
- 2. Nathaël Alibaud, Jérôme Droniou, and Julien Vovelle, Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ. 4 (2007), no. 3, 479–499. MR 2339805, https://doi.org/10.1142/S0219891607001227
- 3. David Applebaum, Lévy processes and stochastic calculus, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 116, Cambridge University Press, Cambridge, 2009. MR 2512800
- 4. Ben-Yu Guo, Spectral methods and their applications, World Scientific Publishing Co., Inc., River Edge, NJ, 1998. MR 1641586
- 5. Piotr Biler, Tadahisa Funaki, and Wojbor A. Woyczynski, Fractal Burgers equations, J. Differential Equations 148 (1998), no. 1, 9–46. MR 1637513, https://doi.org/10.1006/jdeq.1998.3458
- 6. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods, Scientific Computation, Springer-Verlag, Berlin, 2006. Fundamentals in single domains. MR 2223552
- 7. Chi Hin Chan and Magdalena Czubak, Regularity of solutions for the critical 𝑁-dimensional Burgers’ equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 2, 471–501 (English, with English and French summaries). MR 2595188, https://doi.org/10.1016/j.anihpc.2009.11.008
- 8. Chi Hin Chan, Magdalena Czubak, and Luis Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation, Discrete Contin. Dyn. Syst. 27 (2010), no. 2, 847–861. MR 2600693, https://doi.org/10.3934/dcds.2010.27.847
- 9. Hongjie Dong, Dapeng Du, and Dong Li, Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J. 58 (2009), no. 2, 807–821. MR 2514389, https://doi.org/10.1512/iumj.2009.58.3505
- 10. Gui Qiang Chen, Qiang Du, and Eitan Tadmor, Spectral viscosity approximations to multidimensional scalar conservation laws, Math. Comp. 61 (1993), no. 204, 629–643. MR 1185240, https://doi.org/10.1090/S0025-5718-1993-1185240-3
- 11.
S. Cifani.
On nonlinear fractional convection-diffusion equations.
PhD Thesis 2011:282, NTNU, 2011. - 12. Simone Cifani and Espen R. Jakobsen, Entropy solution theory for fractional degenerate convection-diffusion equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011), no. 3, 413–441. MR 2795714, https://doi.org/10.1016/j.anihpc.2011.02.006
- 13. Simone Cifani, Espen R. Jakobsen, and Kenneth H. Karlsen, The discontinuous Galerkin method for fractal conservation laws, IMA J. Numer. Anal. 31 (2011), no. 3, 1090–1122. MR 2832791, https://doi.org/10.1093/imanum/drq006
- 14.
P. Clavin.
Instabilities and nonlinear patterns of overdriven detonations in gases.
Nonlinear PDE's in Condensed Matter and Reactive Flows.
Kluwer, 49-97, 2002. - 15. Rama Cont and Peter Tankov, Financial modelling with jump processes, Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton, FL, 2004. MR 2042661
- 16. Jérôme Droniou, A numerical method for fractal conservation laws, Math. Comp. 79 (2010), no. 269, 95–124. MR 2552219, https://doi.org/10.1090/S0025-5718-09-02293-5
- 17. J. Droniou, T. Gallouet, and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ. 3 (2003), no. 3, 499–521. Dedicated to Philippe Bénilan. MR 2019032, https://doi.org/10.1007/s00028-003-0503-1
- 18. Jérôme Droniou and Cyril Imbert, Fractal first-order partial differential equations, Arch. Ration. Mech. Anal. 182 (2006), no. 2, 299–331. MR 2259335, https://doi.org/10.1007/s00205-006-0429-2
- 19. Lawrence C. Evans, Partial differential equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010. MR 2597943
- 20. Andreas Dedner and Christian Rohde, Numerical approximation of entropy solutions for hyperbolic integro-differential equations, Numer. Math. 97 (2004), no. 3, 441–471. MR 2059465, https://doi.org/10.1007/s00211-003-0502-9
- 21. Maria Giovanna Garroni and Jose Luis Menaldi, Second order elliptic integro-differential problems, Chapman & Hall/CRC Research Notes in Mathematics, vol. 430, Chapman & Hall/CRC, Boca Raton, FL, 2002. MR 1911531
- 22. Helge Holden and Nils Henrik Risebro, Front tracking for hyperbolic conservation laws, Applied Mathematical Sciences, vol. 152, Springer-Verlag, New York, 2002. MR 1912206
- 23. Harold Jeffreys and Bertha Swirles, Methods of mathematical physics, Cambridge University Press, Cambridge, 1999. Reprint of the third (1956) edition. MR 1744997
- 24. Kenneth H. Karlsen and Süleyman Ulusoy, Stability of entropy solutions for Lévy mixed hyperbolic-parabolic equations, Electron. J. Differential Equations (2011), No. 116, 23. MR 2836797
- 25. Alexander Kiselev, Fedor Nazarov, and Roman Shterenberg, Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ. 5 (2008), no. 3, 211–240. MR 2455893, https://doi.org/10.4310/DPDE.2008.v5.n3.a2
- 26.
S. N. Kružkov.
First order quasi-linear equations in several independent variables.
Math. USSR Sbornik, 10(2):217-243, 1970. - 27.
N. N. Kuznetsov.
Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation.
USSR. Comput. Math. Phys. 16 (1976), 105-119. - 28.
P. Loya.
Dirichlet and Fresnel integrals via iterated integration.
Mathematics Magazine 78 (2005), no. 1, 63-67. - 29. Yvon Maday and Eitan Tadmor, Analysis of the spectral vanishing viscosity method for periodic conservation laws, SIAM J. Numer. Anal. 26 (1989), no. 4, 854–870. MR 1005513, https://doi.org/10.1137/0726047
- 30. J. Málek, J. Nečas, M. Rokyta, and M. R\ocirc{u}žička, Weak and measure-valued solutions to evolutionary PDEs, Applied Mathematics and Mathematical Computation, vol. 13, Chapman & Hall, London, 1996. MR 1409366
- 31.
K. Sato.
Lévy processes and infinitely divisible distributions.
Cambridge Studies in Advanced Mathematics, 68, Cambridge University Press, 1999. - 32. S. Schochet, The rate of convergence of spectral-viscosity methods for periodic scalar conservation laws, SIAM J. Numer. Anal. 27 (1990), no. 5, 1142–1159. MR 1061123, https://doi.org/10.1137/0727066
- 33. Eitan Tadmor, Convergence of spectral methods for nonlinear conservation laws, SIAM J. Numer. Anal. 26 (1989), no. 1, 30–44. MR 977947, https://doi.org/10.1137/0726003
- 34. Eitan Tadmor, Total variation and error estimates for spectral viscosity approximations, Math. Comp. 60 (1993), no. 201, 245–256. MR 1153170, https://doi.org/10.1090/S0025-5718-1993-1153170-9
- 35. Michael E. Taylor, Partial differential equations. III, Applied Mathematical Sciences, vol. 117, Springer-Verlag, New York, 1997. Nonlinear equations; Corrected reprint of the 1996 original. MR 1477408
- 36. Wojbor A. Woyczyński, Lévy processes in the physical sciences, Lévy processes, Birkhäuser Boston, Boston, MA, 2001, pp. 241–266. MR 1833700
Retrieve articles in Mathematics of Computation with MSC (2010): 65M70, 35K59, 35R09, 65M15, 65M12, 35K57, 35R11
Retrieve articles in all journals with MSC (2010): 65M70, 35K59, 35R09, 65M15, 65M12, 35K57, 35R11
Additional Information
Simone Cifani
Affiliation:
Department of Mathematics, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
Email:
simone.cifani@math.ntnu.no
Espen R. Jakobsen
Affiliation:
Department of Mathematics, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway
Email:
erj@math.ntnu.no
DOI:
https://doi.org/10.1090/S0025-5718-2013-02690-7
Keywords:
Fractional/fractal conservation laws,
entropy solutions,
Fourier spectral methods,
spectral vanishing viscosity,
convergence,
error estimate.
Received by editor(s):
November 15, 2010
Received by editor(s) in revised form:
November 29, 2011
Published electronically:
March 19, 2013
Additional Notes:
This research was supported by the Research Council of Norway (NFR) through the project “Integro-PDEs: Numerical Methods, Analysis, and Applications to Finance”.
Article copyright:
© Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.