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A MINIMAX METHOD FOR FINDING SADDLE CRITICAL
POINTS OF UPPER SEMI-DIFFERENTIABLE LOCALLY
LIPSCHITZ CONTINUOUS FUNCTIONAL IN
HILBERT SPACE AND ITS CONVERGENCE

XUDONG YAO

ABSTRACT. A minimax characterization for finding nonsmooth saddle critical
points, i.e., saddle critical points of locally Lipschitz continuous functional,
in Banach space is presented in [X. Yao and J. Zhou, A local minimaz char-
acterization for computing multiple nonsmooth saddle critical points, Math.
Program., 104 (2005), no. 2-3, Ser. B, 749-760]. By this characterization, a
descent-max method is devised. But, there is no numerical experiment and
convergence result for the method. In this paper, to a class of locally Lipschitz
continuous functionals, a minimax method for computing nonsmooth saddle
critical points in Hilbert space will be designed. Numerical experiments will
be carried out and convergence results will be established.

1. INTRODUCTION

Let B be a Banach space, B* its dual space, (,) the dual relation, and || - || its
norm. To a locally Lipschitz continuous functional J : B — R, the generalized
gradient 9J(u) at v € B in the sense of Clarke [7] is defined as follows.
Definition 1.1. Let J be Lipschitz continuous near ug € B. The generalized
directional derivative J%(ug,v) of J at ug in the direction of v € B is defined by
J(u+tv) — J(u)

, .

J%(ug,v) = limsup
U — UQ
t10

The generalized gradient 0.J(ug) of J at ug is a subset of B* given by
dJ (ug) = {¢ € B*|{¢,v) < J%(ug,v), Yv € B}.

To convex functionals, we have the following definition for the subgradient.
Definition 1.2. Let J : B — R be convex. The subgradient 9.7 (ug) of J at ug is
a subset of B* given by

0J(ug) = {¢ € B*|{¢,u — ug) < J(u) — J(up), Vu € B}.
For convex functionals, the generalized gradient coincides with the subgradient.

According to Chang [5], a point ug € B is a critical point of a locally Lipschitz
continuous functional J if and only if

0 € 8.J(ug).
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If J is a C! functional, 8.J(ug) = {VJ(ug)}, i-e., 0 € dJ(ug) becomes V.J(ug) = 0,
the well-known Euler-Lagrange equation. Critical points of a C' functional are
called smooth critical points and critical points of a locally Lipschitz continuous
functional are called nonsmooth critical points.

The classical optimization theory, nonsmooth analysis and calculus of variation
study local maxima or minima. Traditional numerical methods in these areas are
for finding local extremum points. Local extremum points are critical points. A
critical point ug of J, that is not a local extremum point, is a saddle point, i.e., ug
is a critical point and in any neighborhood N (ug) of ug, there are v,w € N(ug)
such that

J(v) < J(up) < J(w).

In physical systems, saddle points appear as unstable equilibria or transient excited
states.
The minimax principle, which characterizes a saddle point of J as a solution to

minge 4maxy,eaJ(v)

for some collection A of subsets A in B, is one of the most popular approaches in
critical point theory. For smooth critical points, the Mountain Pass Lemma estab-
lished in 1973 by Ambrosetti and Rabinowitz [2] set a milestone in contemporary
critical point theory. Then, various saddle point theorems and linking theorems
were established in the literature to prove existence of multiple critical points for
various nonlinear problems; see [3], [I2]. For nonsmooth critical points, in 1981,
Chang [5] introduced the notion of nonsmooth critical points and obtained a non-
smooth version of the saddle point theorem of Rabinowitz. Kourogenis and Papa-
georgiou [9] generalized Chang’s results and Kandilakis, Kourogenis and Papageor-
giou [8] obtained a nonsmooth version of the Linking Theorem. All these saddle
point theorems and linking theorems in the literature focus on the existence issue
and they are not helpful to devise numerical algorithms for finding saddle critical
points. For computing smooth saddle critical points, Li and Zhou [I0] established
a local minimax characterization of smooth saddle critical points in Hilbert space
and designed a minimax algorithm based on the characterization. Then, Yao and
Zhou [14] extended the local minimax characterization and the minimax algorithm
in Hilbert space to a local minimax characterization and a minimax algorithm in
Banach space. These two algorithms were successfully carried out to find smooth
saddle critical points and convergence results were established; see [10], [11], [14],
[15]. In 2005, Yao and Zhou [I3] gave a local minimax characterization for non-
smooth saddle critical points and devised a descent-max method by the charac-
terization. But, there is no numerical experiment and convergence result for the
method. In this paper, to a class of locally Lipschitz continuous functionals, the
local minimax characterization for nonsmooth saddle critical points in [I3] will be
reestablished in Hilbert space in another way. Then, a minimax method for finding
nonsmooth saddle critical points will be designed. Numerical experiments will be
carried out and convergence results will be obtained.

A typical example on application of nonsmooth critical point theory to partial
differential equations is the Dirichlet problem,

(1.1) { —Au(z) = f(z,u(x)), © € Q,

u(x)|zco0 =0,
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where Q is an open bounded domain in R™ with smooth boundary 99, f(z,t) is
a measurable function defined on Q x R and for every z € Q, f(x,t) is locally
bounded. The corresponding variational functional is

_ 1/ |Vu(3:)|2da:—/ P, u(x))de,

where F(z,t) fo z,s)ds. Denote G(u) = [, F( ))dzx. Then, according to
Chang [B], we have the following theorems for the problem 1.
Theorem 1.3. If f(x,t) satisfies
|fz, )] < C1 + Colt|”
forx e Q CR™ andt € R, where 0 < 0 < ”+2 form>3,0>0 forn=1,2 and

Cy,Cy > 0 are two constants, then, G(u fQ fo (@) f(z, s)dsdz is locally Lipschitz
continuous in L°TH(Q) and H(Q) as well. In addition, if f(x,t) and f(z,t) are
N-measurable (cf. []), where

f(z,t) = lim ess inf|s_s <5 f(, 5)

6—0

and .

flz,t) = %i_r)r(l) ess Sup|,_y <o f (2, 8),
then R

{C(@)I¢ € 0G(w)} € [f(z,u(x)), f(z,u(z))] ae.

in L°TH(Q) and H}(Q) as well.

Remark 1.4. Tt is just for simplicity to assume ¢ > 0 for n = 1,2 in Theorem [[L3]
Theorem [[L5] Lemma 3.6, and for m = 1,2 in Lemma 20, Lemma [£21]

Theoretically, for the Dirichlet problem (L), people will find uy € H}(Q) such
that

(1.2) —Aug(2) € [f(z,uo(2)), f(x, uo(x))]

for all z € Q [5]. By the inclusion {¢(z)[¢ € 8G(u)} C [f(x,u(x)), f(z,u(x))]
in Theorem [[L3] to find such ug, we can find a critical point of J. But, from a
numerical point of view, this inclusion offers little information on 0G(u) and it is
not helpful for computing critical points of J. Also in [5], Chang sharpened the
conclusion.

Theorem 1.5. If f(z,t) is a Baire-measurable function defined on Q x R, is non-
decreasing in t, and satisfies

[f(2,t)| < C1 + Colt|”
forx e Q e R™ and t € R, where()<a<”—+2forn>3 o>0 forn=1,2 and
C1,Cy > 0 are two constants, then the functional G(u fQ fou(x) f(z, s)dsdz is
convex and
0G(u)={¢ : Q@ — R|( is measurable, ((x)€[f(x,u(x) —0), f(z,u(z) + 0)] Y €2}
in L°HL(Q) and HE(Q) as well.
Remark 1.6. The conclusions in this theorem and in Theorem 2.3 in [5] look dif-

ferent. If we read the proof of Theorem 2.3 in [5] carefully, it will be found that
indeed Chang verified the conclusion in this theorem.
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The equality
0G(u) = {¢ : 2 — R|( is measurable, ((z) € [f(x,u(xz)—0), f(z,u(x)+0)] Vz € Q}
is much better than the inclusion

{C(2)I¢ € 0G (u)(2)} C [f (=, u(2)), f(z, u(x))].
It says that finding ug € Hg () which satisfies (2] is equivalent to finding a critical
point of J. On the other hand, this equality offers clear information on 0G(u) and
it is helpful for calculating critical points of J. In Theorem [[.5]

J(u) = I(u) — G(u),

where I(u) = % [, |Vu(z)|?*dz € C'(H(Q),R) and G(u) = [, fu(x) f(z,s)dsdz is
convex on HO (). In this paper, upper seml—dlfferentlable locally Lipschitz con-
tinuous functional will be defined in Banach space B first in Section 2. A locally
Lipschitz continuous functional

J(u) =I(u) — G(u), VYu € B,

where I € C'(B,R) and G : B — R is convex, is an upper semi-differentiable locally
Lipschitz continuous functional on B. Then, to upper semi-differentiable locally
Lipschitz continuous functionals, the local minimax characterization for nonsmooth
saddle critical points in [I3] will be reestablished in Hilbert space H and, according
to this local minimax characterization, a minimax algorithm for capturing saddle
critical points of upper semi-differentiable locally Lipschitz continuous functionals
will be presented. In Section 3, the SC-condition will be defined first. Based
on the SC-condition, the subsequence and sequence convergence for the minimax
algorithm will be established. This is the first time that convergence results are
obtained for a minimax algorithm to capture nonsmooth saddle points. In Section
4, this minimax algorithm will be implemented to solve numerical examples.

At the end of this section, let us recall some simple properties of the general-
ized directional derivative J°(u,v) and the generalized gradient 9.J(u) to locally
Lipschitz continuous functional J.

Proposition 1.7 ([7]). Assume that J,W are locally Lipschitz continuous in B.

(a) For every u € B, dJ(u) is a nonempty, conver and w*-compact subset of
B*.

(b) If |J(w) — J(v)| < K||lw — v|| for all w,v in a neighborhood of v € B, then
0J(u) is a bounded set in B* with bound K.

(c) O(J+W)(u) CIJ(u) +0W (u) for every uw € B and for A € R, d(AJ)(u) =
A0J (u) for every u € B.

(d) If u € B is a local minimum or mazimum point of J, then 0 € 0J(u).

(e) (Chain Rule) Let X be a Banach space. If L : X — B is strictly differential
at v, i.e., there is a D;L(v) € L(X, B) such that for each w € X,

’ . ’
lim L(v' + tw) — L(v")

v = t
t10

= (DsL(v), w)

and the convergence is uniform for w in compact sets, then F = J o L has
OF (v) C 0J(L(v)) o DsL(v).

Equality holds if L maps every neighborhood of v to a set which is dense in a
neighborhood of L(v).
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(f) J%(u,v) : B x B — R is upper semicontinuous.

2. A MINIMAX METHOD IN HILBERT SPACE

Let H be a Hilbert space, (,) the inner product, || - || the norm introduced by
the inner product (,) and L a closed subspace of H. Denote [L,v] as the subspace
spanned by L and v € H and [uy,us, ..., u,,] as the subspace spanned by u; € H,
it = 1,2,...,m. For any subspace H' of H, Sg: is the unit sphere in H' and for
any closed subspace M of H, H = M @ M~ is the orthogonal decomposition of H
and M~ is the orthogonal complement of M in H. For any v € H and U C H,
d(v,U) = infyep ||v — ul], i.e., the distance between v and U.

To design a minimax algorithm, the following peak selection is important.

Definition 2.1. A set-valued mapping P : S;. — 2 is the peak mapping of a
locally Lipschitz continuous functional J : H — R w.rt. L if Yo € Spu, P(v) =
{u € [L,v] : uis a local maximum point of J in[L,v]}. A single-valued mapping
p: Spi — H is a peak selection of the locally Lipschitz continuous functional J
w.rt. Lif p(v) € P(v), Yo € Spu. For a given v € Sy 1, if p is locally defined in a
neighborhood of v, we say that J has a local peak selection p at v.

The peak selections have the following property.

Lemma 2.2. Assume that L C H is a finite dimensional space, v € Sy and p is
a local peak selection of a locally Lipschitz continuous functional J w.r.t. L at v.
Then, there is z € 0J(p(v)) such that z L [L,v].

Proof. Since L is a finite dimension space, assume that wui,usg, ..., Uy, is a basis.
Consider the composite functional

F(to,tl, ,tm) = J(to’U + t1u1 + -+ tmum)
According to (e) in Proposition [T we have
OF (to,t1, «oy tm) = {({C,0), (G u1), oy (Cum))|C € BT (o + trug + -+ + L) -

Since p is a peak selection, by (d) in Proposition [l 0 € F(t§,tY, ..., t%,), where
p(v) = t§v + tYuy + -+ - + tY U, i.e., there is z € 3J(p(v)) such that

(z,v) =0 and (z,u;) =0, i=1,...,m,
ie, z L [L,v]. O
Remark 2.3. This conclusion is simple and important. To upper semi-differentiable
locally Lipschitz continuous functionals which will be defined later, it will be used
to reestablish the local minimax characterization for nonsmooth saddle critical

points in [13] in Hilbert space. On the other hand, if J € C'(H,R), 8J(p(v)) =
{VJ(p(v))} and VJ(p(v)) L [L,v] are obviously true.

We give two simple lemmas which will be used later.

Lemma 2.4. In Banach space B, for any point v with ||v|| =1, it holds that

v+ w | < 2||w||
[v+w|” ™ [Jv+w]

lv— , Yw e B.
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Proof. Since ||v|| = 1, we have
[[o +wl] [[o 4wl - [v+w
_ Ml = lolll 4wl 2wl 0
[[o +w] [[o + w]

Lemma 2.5. For
J(u) =I(u) — G(u), Yu € B,
where I € CY(B,R) and G : B — R is locally Lipschitz continuous on Banach space
B,
9J(u) ={VI(u) - glg € 0G(u)},
where V1 is the gradient of 1.
Proof. By (c¢) in Proposition [[7
0J(u) C 0I(u) + 9(—G)(u) = {VI(u)} — 0G(u),
i.e.,
9J(u) C{VI(u) — glg € 0G(u)}.
On the other hand, by (¢) in Proposition [[L7] again,
0G(u) C oI(u) + d(=J)(u) =4{VI(u)} — 0J(u).
This means that VI(u) — go € 8J(u) for every go € 0G(u). Then,
{VI(u) = golgo € 0G(u)} C 0J(u).
Hence,
8J(u) = {VI(u) — glg € G (u)}. -
In this section, we will establish a minimax characterization for upper semi-

differentiable locally Lipschitz continuous functionals. First, we define upper and
lower semi-differentiable locally Lipschitz continuous functionals.

Definition 2.6. In Banach space B, a locally Lipschitz continuous functional J
is an upper semi-differentiable locally Lipschitz continuous functional if, for every
u € B, z € 8J(u) implies, for w around u,

J(w) = J(w) < (7w — u) + Flwiu, z),

where F(w;u, z) = o(||lw —wul|) is an upper-bound functional around « and a locally
Lipschitz continuous functional I is a lower semi-differentiable locally Lipschitz
continuous functional if, for every u € B, z € 0I(u) implies, for w around wu,

I(w) — I(u) > (z,w — u) + G(w; u, z),

where G(w;u, z) = o(]]w — ul]) is a lower-bound functional around u and {,) is the
dual relation between B and its dual space B*.

Remark 2.7. (a) If J : B — R is Fréchet differentiable, then, to every v € B,
z € 8J(u) = {VJ(u)} implies

J(w) = J(u) = (z,w —u) + o(|lw — ul))
for w around u, i.e.,
(2.1) J(w) — J(u) < {(z,w —u) + o(||]w — ul|)
for w around u, and
(2.2) J(w) = J(u) > (z,w —u) + o(|lw — ul))
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for w around u. To a locally Lipschitz continuous functional J : B — R, if, for
every u € B, z € 9J(u) implies both [21]) and (22]), then J is Fréchet differentiable.
Hence, a locally Lipschitz continuous functional J : B — R can be considered as
a semi-differentiable locally Lipschitz continuous functional if, for every u € B,
z € 0J(u) implies [ZT) or for every u € B, z € 9J(u) implies ([22)).

(b) If J € CY(B,R), J is an upper semi-differentiable locally Lipschitz con-
tinuous functional and also a lower semi-differentiable locally Lipschitz continuous
functional.

The following lemma gives us an important class of upper semi-differentiable
locally Lipschitz continuous functionals.

Lemma 2.8. A locally Lipschitz continuous functional
J(u) =I(u) — G(u), Yu € B,

where I € CY(B,R) and G : B — R is conver on Banach space B, is an upper
semi-differentiable locally Lipschitz continuous functional on B.

Proof. Since I € C*(B,R), to every u € B,
I(w) = I(u) = (VI(u),w —u) + o(||lw — ul))
for w around w and since G is convex in B, to every u € B and g € 0G(u),
G(w) = G(u) = (g,w —u)
for w € B. By Lemma 23] for z € 0J(u), there is go € dG(u) such that z =
VI(u) — go. Thus,
J(w) = J(u) = (I(w) = I(u)) — (G(w) — G(u))

< (VI(w) = go,w —u) + of[Jw —ul]) = (z,w —u) + o([|w —ul])

for w around w, i.e., J is a upper semi-differentiable locally Lipschitz continuous

functional on B. O

Remark 2.9. According to the verification of the lemma, it is clear that
F(w;u, z) = I(w) = I(u) = (VI(u), w —u) = o(||w — ul])
is an upper-bound functional of J around wu.

To simplify the statement of mathematical justification and convergence results
for our minimax algorithm, we need the definition for super-linear property of peak
selection.

Definition 2.10. Let J be an upper semi-differentiable locally Lipschitz continuous
functional on Hilbert space H and H = L @ L+ for a finite dimensional subspace
L C H. If pis a local peak selection of J w.r.t. L at v € S such that p is
continuous at v and, for every z € 9J(p(v)) N [L,v]*, there is an upper-bound
functional F'(u;p(v), z) of J around p(v) satistying

i [E@(w);p(v), 2)|

ooy w0

207

we say that the peak selection p has super-linear property at v. If p is a peak
selection of J w.r.t. L defined on an open set V C H and p has super-linear
property at every v € V| we say that the peak selection p has super-linear property
inV.
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Remark 2.11. (a) Theoretically, we can give a general definition by using “for a z €
8J(p(v)) N[L,v]1” instead of “for every z € 8J(p(v)) N [L,v]+”. If we choose that
special z in the general definition as z in Lemma 2.14] then, we still have Lemma
2.I4 and Theorem We can still use Lemma 2.14] as step-size rule to design a
minimax algorithm. But, numerically, we prefer “for every z € 8.J(p(v)) N [L,v]*”
since it is hard to find that special z in numerical computation. On the other hand,
for establishing convergence results, i.e., Theorem [3.9] Theorem [B.12] and Corollary
BI14 we also prefer “for every z € 8.J(p(v)) N [L,v]*".
(b) Since F(p(w);p(v),z) = o(||p(w) — p(v)]|), the Lipschitz continuity of p

around v, i.e.,

Ip(w) = p(v)|| < Ifjw — ]|
for w around v, where [ > 0 is a constant, means that the peak selection p has
super-linear property at v. Indeed, usually the Holder continuity of p around v,
ie.,

Ip(w) = p(v)[| < ljw —vf|*
for w around v, where [ > 0 is a constant and 0 < « < 1 is close to 1, will guarantee
that the peak selection p has super-linear property at v.

For J € C'(H,R), we will prove that continuity of peak selection p of J w.r.t.
a finite dimensional subspace L C H at v € S;1 implies super-linear property of p
at v. First, we verify a simple and useful lemma.

Lemma 2.12. Assume that H is a Hilbert space and v € H such that ||v|| = 1.
Denote M = {tv|t € R}. Then, for every u € H with ||ul]| =1 and (u,v) > 0, there
is unique d € M+ with ||d|| =1 and s > 0 such that

Proof. Since H is a Hilbert space, there is w € M+ with ||w|| = 1 such that

(2.3) U = C1v + cow.
Then, by |Jul| = ||v|| = |[w|| = 1 and w € M+, we know
(2.4) A +ci=1.

On the other hand, (u,v) >0, [[v]| = 1 and w € M+ mean ¢; = M; = (u,v) > 0.

Thus, there is s > 0 such that ¢ = ﬁ If we set

d— w, if ey <0,
Tl —w, ifes >0,

then, by 23) and (24),

L (v~ sd)
u=——(v— sd).
V1+ s2
Since cow is unique and ¢ = {(u,w), d is unique. a

By Lemma 2121 we establish a relation between continuity and super-linear
property of peak selection of J € C'(H,R) as follows.

Lemma 2.13. Assume that H is a Hilbert space, J € C*(H,R), H =L @& L* for
a finite dimensional subspace L C H and p is a local peak selection of J w.r.t. L
atv € Spi. If p is continuous at v, then p has super-linear property at v.
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Proof. In Hilbert space L+, if w € Sp1 and ||w — v|| < 1, then

1
1> Jjw —v||2 ||w||2 + Hv||2 —2(w,v) =2 = 2(w,v), ie., (wv)> .

[\

Thus, by Lemma [ZT2] for every w € Sp. with ||w — v|| < 1, there is s > 0 and
d € [L,v]* such that ||d|| = 1 and

w = \/1:_—82(11 + sd)
Hence, for small s > 0,
Hp(w) = Tplo) = Jo() = ()
< Il) ~ T+ ) = (V). )
= (ST, d)+ (V) = VI p(0). )
= (VI plw) = p(0) + (VI (0) = VI (p(0). ).

where p(w) = twﬁ +wp, wy, € L, n = Ap(w) + (1 — )\)(Hvi—‘;duv + wp) and
A€ 0,1], ie

(2.5) |F(p(w); p(v), VJ (p(v)))| <

where

twls

F(u; p(v), VI (p(v)))
)

_ {D( (v), VJ(p(v))), if D(u;p(v), VJ(p(v))) >0,
0, if D(u;p(v), VJ(p(v))) <0

is an upper-bound functional of J around p(v) and
D(u; p(v), VJ(p(v))) = J(u) = J(p(v)) = (VI (p(v)), u = p(v)).
On the other hand,

1 1 s
w—vl| = v+ sd) —v| = — Do+ d
o=l = |y 0+ ) ~ 0] = H(m o+
1 s
= 1 -1+ s2)v+sd| = —d

s 52
1+ ,
\/1+32\/ (1+V1+s2)2

lw — vl

(2.6) lim

Hence, by (23] and (20,
[F'(p(w); p(v), VJ (p(v)))|

lim =0,
W l[w — vl

=1

i.e., p has super-linear property at v. ]
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By peak selection, the following lemma can be verified. The conclusion will be
used as a step-size rule for our minimax algorithm.

Lemma 2.14. Let H be a Hilbert space with H = L & L* for a finite dimensional
subspace L C H. Assume that J is a upper semi-differentiable locally Lipschitz
continuous functional and p is a local peak selection of J w.r.t. L atv € S such
that p(v) is not a critical point, p has super-linear property at v and d(p(v), L) > 0.
Choose z € 9J(p(v)) N [L,v]*. Denote p(v) = t,v + w,, where w, € L and w =

z

—sign(t, )— Then, as s > 0 is small,

=]l

T () = J(p(0)) <~ gsltallz],
v+sw 1
fotsull - Vits?

Proof. Since J is a upper semi-differentiable locally Lipschitz continuous functional
and p is continuous at v, we have

J(p(v(s))) = J(p(v)) < (z,p(v(s)) = p(v)) + F(p(v(s)); p(v), 2)

for sl « > 0, whene F{p(0(2):p(0).) = {1p(s(5) (o)) 3y upper-bonnd
functional around p(v). On the other hand, since z L [L,

(z,p(v)) = (2, tyv + w,) =0

where v(s) = (v + sw).

and

(2,p(v(s))) = (2, t50(s) + ws)

v+ sw sign(t,)tss| 2|
(zyts7——— +ws) = ——————
v+ sw]|

sU(s) + ws and wy € L. According to the continuity of p at v and

9

[v+ swl|

where p(v(s))
d(p(v), L) > 0,
sign(t,) = sign(t,)
for small s > 0. Since |jv]| =1,
[o + sw|| <2
for small s > 0. Thus, we have

J(p(v(s))) = J(p(v))

_ sign(to)tss|z|l

+ F(p(v(s));p(v), 2)

[v + swl|

—gsltallzll + F(p(u(s));p(v), 2

for small s > 0. By super-linear property of p at v, there is a upper-bound functional
Fo(p(v(s));p(v), z) around p(v) such that

L [ Fo((u(s));p(v), 2)|
S T B

IN

Then, by (Z8),
L Fo(p(e(s):ple). )|
s—0 S
Therefore, since p(v) is not a critical point and d(p(v), L) > 0, as s > 0 is small,

Tp(o(s)) ~ Tp()) < ~ szl 0

=0.



A MINIMAX METHOD FOR FINDING NONSMOOTH SADDLE POINTS 2097

Remark 2.15. (a) The existence of z € 8.J(p(v)) N [L,v]* is guaranteed by Lemma

(b) Comparing Lemma 2.14 with Lemma 3 in [13], the difference is different
elements of generalized gradient are used to decide descent direction. In this lemma,
z € 0J(p(v)) with z L [L,v] is used. In Lemma 3 in [I3], z € 9J(p(v)) with
Iz|l = min{||C|||¢ € OJ(p(v))} is used. If p is continuous at v € Sy 1, for a sequence
of generalized gradients {z,} such that z, € dJ(p(vy,)) N [L,va]*, {va} C Spo,
z, — z and v, — v, we have z € 9J(p(v)) N [L,v]*. This property is crucial to
the convergence of our minimax algorithm. For a sequence of generalized gradients
{zn} such that ||z, | = min{|[(||[¢ € dJ(p(vn))}, {vn} C Sp1, 2n — 2z and v, — v,
we do have z € dJ(p(v)) under the assumption that p is continuous at v € Sy ..
But, we do not know if ||z|| = min{]||(|||¢ € dJ(p(v))}.

(c) Comparing this lemma with Lemma 2.1 in [I0], we assume super-linear
property of p at v here instead of continuity of p at v in Lemma 2.1 in [I0]. By
Lemma T3 if J € C1(H,R), these two assumptions are equivalent.

By Lemma[ZT4] a local minimax characterization for nonsmooth saddle critical
points in [I3] can be reestablished to upper semi-differentiable locally Lipschitz
continuous functionals as follows.

Theorem 2.16. Let H be a Hilbert space with H = L& L' for a finite dimensional
subspace L C H. Assume that J is a upper semi-differentiable locally Lipschitz
continuous functional and p is a local peak selection of J w.r.t. L atv € Sp1 such
that

(a) p has super-linear property at v and d(p(v), L) > 0, and

(b) v is a local minimum point of J(p(-)) on Sp.
Then, p(v) is a critical point of J.

Proof. If p(v) is not a critical point of J, then by Lemma 214l as s > 0 is small,

J(p(v(s))) = J(p(v)) < —ESItUIIIZII,

where v(s) = HZ:::%ZH, w = —sign(tv)Hi—H, 2z € dJ(p())N[L,v]*, p(v) =ty +w,
and w, € L. It is a contradiction to assumption (b). O

Remark 2.17. (a) Suppose that a critical point u is characterized by Theorem 216
Then, v = p(v) means, for any neighborhood N (u) of u, there is u; € [L,v] such
that u; € M (u) and J(u1) < J(u) except that J is a constant functional around u on
[L,v], and, u = p(v) and v is a local minimum point of J(p(-)) on S mean, in any
neighborhood A (u) of u, there is vy € Sp1 around v such that us = p(ve) € N(u)
and J(uz) = J(p(ve)) > J(p(v)) = J(u) except that J(p(-)) is a constant functional
around v on Sp1. Therefore, except extreme cases, in any neighborhood N (u) of
u = p(v), there are uj,us € N(u) such that J(u1) < J(u) < J(ug), i.e., uis a
saddle point of J.

(b) Comparing this theorem with Theorem 2.1 in [I0], we assume super-linear
property of p at v in this theorem instead of continuity of p at v in Theorem 2.1 in
[10]. By Lemma T3] if J € C'(H,R), these two assumptions are equivalent.

According to Lemma 2 T4 and Theorem [2.16] we can design a minimax algorithm
for capturing saddle critical points of an upper semi-differentiable locally Lipschitz
continuous functional J. Assume that wi,us,...,u,_1 are found critical points,
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L = [uj,u2,...;upn—1], A > 0 is a constant and ¢ is a small positive number. The
following is the flow chart for the algorithm.
Step 1. Choose v} € Sy 1.
Step 2. Set kK =1 and solve for
uf = pF) = thoF + thuy + - 48w,y

= argmax {J(tovﬁ +tiug + o tporun—1)|t €ERi=0,1,..,n — 1}.

k
Step 3. Find a descent direction w! = —sign(t§) IIEEH at uk, where zF € 9J(uf) N
[L,vE]L.

Step 4. If ||2¥| < &, then output u%, stop. Otherwise, do Step 5.

k k

vE 4 sw

Step 5. For each s > 0, let v (s) = m and use initial point (t&, 5, ..., tF_,)

n n

to solve for
n—1
p(vF(s)) = arg max {J(tov,kl(s) + Z tiu)|t; € R,i=0,1,....,n — 1},
i=1
then set vFt1 = vk (sF) and ubt! = p(vktl) = thTlphtl 4 ¢htly, .o 4

th 1w, 1, where s* satisfies

A 1
sk = max {s = Zm € N, J(p(vh())) = T(p(vh) < =5 [tblsll =5 }-
Step 6. Update k =k + 1 and go to Step 3.
Remark 2.18. (a) In Step 1, we would like to choose v} € S;. such that it is

n

an increasing-decreasing direction at u,_1, i.e., ¢(t) = J(u,_1 + tv}) increases on
[0,7] and decreases on [f,%]. Then, a local maximum point £ of ¢(t) can be used to
construct (to,t1, ..., tn_2,tn_1) = (£,0,...,0,1) as an initial point to calculate u..

(b) In Step 5, we usually set 0 < A < 1 to prevent the stepsize from being too
large to lose search stability.

(c) Suppose that © = 0 is a found critical point (usually a minimum point) of
J. Then, set L = {0} and use the above algorithm to find a new critical point.
Denote u; as a new critical point. Then, set L = [0,u;] = [u1] and carry out the
above algorithm to calculate a new critical point, ug. Thus, set L = [u,us] and
implement the above algorithm to compute a new critical point, us, and so on.
That is the usual way to use this minimax algorithm. If ug # 0 is a found critical
point (usually a minimum point) of J, then, I(u) = J(u + up) has critical point
u = 0. The above algorithm will be implemented to I to find critical points of J.

(d) In Step 5, from m = 1, we solve an n-dimensional optimization problem to
get p(vE(s)) and check if

(2.7) J(p(v () = J (ploy)) < —%\t’S\SIIZT’iH

for s = 2=, m € N, one by one. As soon as we get mX € N such that (Z7)

n

_ A ko A ktl g k(gk R+l _ (o ktl
holds for s = ks Weset sy = —Sp, v = v (sy) and wit = p(vit!). When n

becomes larger, generally we have to do more calculation to solve the n-dimensional
optimization problem for p(vk(s)).

(e) Numerical experiments show that generally the iteration number in k will
grow with n.
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3. CONVERGENCE

Before establishing convergence for the minimax algorithm, we generalize it to
an L-1 algorithm. First, L-1 selection should be defined to a locally Lipschitz
continuous functional J and a closed subspace L in Hilbert space H.

Definition 3.1. A set-valued mapping P : S;. — 2 is the L-L mapping of a
locally Lipschitz continuous functional J w.r.t. L if Yo € Sy, P(v) ={u € [L,v] :
0J(u) N [L,v]* # 0}. A single-valued mapping p: S+ — H is an L- 1 selection of
the locally Lipschitz continuous functional J w.r.t. L if p(v) € P(v), Yv € Sp..
For a given v € Sy 1, if p is locally defined in a neighborhood of v, we say that J
has a local L-1 selection p at v.

Remark 3.2. If L C H is a finite dimensional subspace, by Lemma 2.2 it is clear
that a peak selection w.r.t. L is an L-1 selection w.r.t. L.

Then, it is easy to check that Lemma [214] and Theorem are also correct
to an L-L selection p. By this generalization, an L-L algorithm for capturing
saddle critical points of a upper semi-differentiable locally Lipschitz continuous
functional J can be designed. Assume that uy,us, ..., 4,1 are found critical points,
L = [ug,ug,...;un—1, A > 0 is a constant and ¢ is a small positive number. The
flow chart for the algorithm is given as follows.

Step 1. Choose v} € Sy ..
Step 2. Set k =1 and find u® = p(vk) = thok + thus + -+ t5_ u,_; such that

AJ(uF) N [L, vkt # 0.

k
Step 3. Find a descent direction w® = —sign(tf) IIEEH at u¥, where z¥ € 9J(uF) N
[L,vE] L.
Step 4. If ||2¥| < &, then output uk, stop. Otherwise, do Step 5.
k k
v, + sw
Step 5. For each s > 0, let v¥(s) = —2———"_ and find k =1 k(s) +
P s U'IL(S) ||v§+sw£§|| 11 1 p(’Un(S)) O(S)UH(S)

2?2—11 t;i(s)u; such that
8 (p(vE (s))) N [L, vk ()" # 0,

then set vFt! = vF(sk) and ubt! = p(vkt!) = Tkl 4 ¢ty . 4

n
th L, 1, where s* satisfies

sh = max {s = 2fm € N, J(p(v(5))) — T(o) < 5 11sl51

Step 6. Update k = k + 1 and go to Step 3.

To discuss convergence of the L-1 algorithm, we need the following nonsmooth
version of PS condition [5] and SC-condition in Banach space B.

Definition 3.3. A locally Lipschitz continuous functional J : B — R satisfies the
PS condition if any {u,} C B such that {J(u,)} is bounded and ¢, — 0, where
Cn € 0J(uy,) and ||, || = min{||C]||¢ € 0J (un)}, possesses a convergent subsequence.

Definition 3.4. A locally Lipschitz continuous functional J : B — R satisfies the
SC-condition if any {(,|¢, € 0J(uyn)}, where u,, — u, possesses a subsequence
{¢n,} such that ¢,, — ¢ € 9J(u).
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Remark 3.5. Since the algorithms are for upper semi-differentiable locally Lipschitz
continuous functional J, generalized gradient is used instead of gradient. Then, the
continuity of gradient to functional J € C'(B,R) is lost. The SC-condition is
defined instead for generalized gradient of locally Lipschitz continuous functional.
It may be considered as a “subsequence-continuity-condition”. The SC-condition
is crucial to establish subsequence and sequence convergence for the algorithm. On
the other hand, for functional J € C'(B,R), the SC-condition is automatically
satisfied.

For the SC-condition, the following lemma can be verified.

Lemma 3.6. If Q) C R" is an open bounded domain, f(x,t) is a measurable func-
tion on Q x R™ and f(x,t) satisfies

[f (@, )] < Cy + Colt]?,
forx € Q and t € R, whereO<U<Z—'ﬁforn23,0>0f07’n:1,2

and Cy,Cy > 0 are two constants, then the locally Lipschitz continuous functional
G(u) = [, fou(m) f(x,8)dsdx satisfies the SC-condition in HJ(£2).

Proof. First, according to Chang [5], G(u) = [, fou(z) f(z, s)dsdz is locally Lips-
chitz continuous in L°T1(Q) and H}(Q) as well. Suppose that u,, — u in H}(Q).
By the Sobolev embedding theorem, u, — u in L°T1(Q). By Theorem 2.2 in [5]
and (b) in Proposition 7, {(,|¢ € 0J(uy)} is bounded in L7(€2), where n = 2L,
Since L"(Q) is reflexive, {¢,} has a subsequence which is weakly convergent to
¢ € 8J(u). We assume that ¢, — ¢ weakly in L7(Q2). Then, {(,} must have
a subsequence which is convergent to ¢ in H~!(Q). Otherwise, there is € > 0
such that [|¢,, — ¢[|g-1(q) > €. This means there is {&,}, where &, € Hj(2) and
||£n\|Hé(Q) =1, and p > 0 such that

(3.1) /Q (Cul) = C())En(@)dz > p.

By the Rellich-Kondrachov theorem (cf. [I]), {£,} has a subsequence which is
convergent to & in L7T()). We can assume &, — £. Then,

| /Q<<n<x> ~ ((@))en(a)dal
< / (Gala) — ¢(2))(En(x) — E(2))da + | /Q<<n<x> ~ ((@))E(x)da]
< 6 —¢

@ l6n — €l + | /Q (Cal@) — (@))€ (x)de]
< (Uallzry + 1< o) 1€ — Ellosiiay + | /Q (o) — C(2))E(x)dal,

where n = ZEL| means

/Q(Cn(iv) —((x))én(z)dz — 0.

This is a contradiction to (3I]). Thus, {¢,} has a subsequence which is convergent
to ¢ in H~1(£2). Hence, by (f) in Proposition [[7} the locally Lipschitz continuous

functional G(u) = [, fou(x) f(z, s)dsdx satisfies the SC-condition in Hg (). O
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Remark 3.7. A similar result can be established in Banach space Wol’q (Q), g>1.
To establish subsequence convergence, the following lemma is crucial.

Lemma 3.8. Let H be a Hilbert space with H = L @ Lt for a finite dimensional
subspace L C H. Assume that J is a upper semi-differentiable locally Lipschitz
continuous functional and p is a local L-1 selection of J w.r.t. L around v €
Sp1 such that p(v) is not a critical point, p has super-linear property at v and
d(p(v),L) > 0. If v; = v and z; — z, where v; € Sp1, z; € dJ(p(v;)) N [L,v;]*
and z € 0J(p(v)) N [L,v]*, then there is so = 5o, mo € N such that, as j is large,

2mQ s
1
J(p(vj(50))) = J(p(v;)) < =7 solt;lllz1l,
Vi + Sow; R .
where vj(sg) = m, w; = —&gn(tﬁﬁ, p(v;) = tjv; +uy, uj € L.

Proof. By Lemma 214l as s > 0 is small,

1
J(p(v(s))) = J(p(v)) < = sltulliz]],
v+ sw
= —, w
v+ swl|
p is continuous at v, v; = v and z; — 2, there is s = 2%0, mg € N such that, as j
is large,

where v(s) = —sign(tv)ﬁ and p(v) = t,v + u, u € L. Thus, since

J(p(vj(s0))) — J(p(vy)) < —iso|tj|||zj||,

Vi + Sow; .
where v;(sg) = m, w; = —sign(t;)
J J

ZjH,p(’Uj):tj’Uj-FUj,Uj € L. O

Il

First, we prove a subsequence convergence result for the L-1 algorithm.

Theorem 3.9. If an upper semi-differentiable locally Lipschitz continuous func-
tional J satisfies the PS condition and the SC-condition, A € (0,1), {vF} is a
sequence generated by the L-1 algorithm and the L-1 selection p of J satisfies:

(a) p has super-linear property on Sy,

(b) d(p(vF),L) > a > 0,Yk =1,2,..., and

(c) infi<pcco J(p(v])) > —00,
then,

(d) {vE} has a subsequence {vFi} such that uFi = p(vki) converges to a critical
point of J,

(e) if a subsequence v¥i — vg as i — oo, then ug = p(vo) is a critical point of J.

Proof. (a) By the step-size rule, we have

1
(3.2) I (up ™) = J(uy) < —1|t§|5§||2§||7
for k =1,2,.... On the other hand, by Lemma [Z4]

k k,.k
Un, + SnWn

lon ™ = opll = Il — val
" " log + siwpll "
2l|spwgll 25, 255

lof +spwpll = M —si] — 1=A

and, by assumption (b),
(33) lt5] > d(p(vy;), L) > .
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Then,

1 (1- )
(3.4) J(upth) = J(uy) < —th’SISZIIZliII < —Tallv’”1 —vpllllzl-

n n

Thus, there is a subsequence 2% — 0. Otherwise, there is § > 0 such that ||zk|| > ¢
for any k. From (B.4]), we have

1

(3.5) Jurh — gk < —@aéﬂvﬁﬂ —oF, VE=1,2,...

Adding up two sides of [B.3]) gives

. 1y - 1 (1-2X) - 1
(36) Jim I = I(0h) = SV - I < S5 =003 ok = o

i.e., {v¥} is a Cauchy sequence. Thus v¥ — © € Sy .. Since J satisfies the SC-

condition and p is continuous, there is a subsequence 2% — 2 € 9J(p(0)) N [L, 9]+
with z # 0. On the other hand, by (8.3) and adding up two sides of ([8.4]), we have
: k 1 L~ ey bk 1o~ ok
lim J(un) - J(un) < _Z |t0|sn||zn|| < _Zaazsn’

k=1 k=0

or s8 — 0as k — oo. It contradicts Lemma B8 When there is a subsequence

2k — 0, by the PS condition, we can assume ufi = p(vF) — wg. By (f) in
Proposition [T, 0 € 8J (ug), i.e., ug is a critical point.
(b) Suppose uy = p(vg) is not a critical point. Then, there is § > 0 such that

|zki|| > 6,i=1,2,... By B2) and B3), we have

. . 1 ok
J(ug ™) = T () < =g

shi

ki
n 11%n

1
< —Zoz(sz;’.

Since Y oo [J(ult ) —J (uf)] =limy o0 J(uF)—J(ul), it leads to lim;_, o0 (J (ufit1)—

J(uF)) = 0. Hence, lim s¥ = 0. This contradicts Lemma[B8 Thus, ug is a critical
71— 00

point. ([l

Remark 3.10. Comparing this theorem with Theorem 3.2 in [I1], we assume super-
linear property of p on Sr. in this theorem instead of continuity of p on Sp. in
Theorem 3.2 in [11]. By Lemma 213 if J € C'(H,R), these two assumptions are
equivalent.

To give a sequence convergence, the following Ekeland’s variational principle [12]
will be used first to prove an abstract existence-convergence result that is actually
independent of the algorithm.

Lemma 3.11 (Ekeland’s variational principle). Let X be a complete metric space
and J : X — RU{+o0} be an upper semicontinuous functional bounded from below.
Then, for any € > 0 and xg € X with J(xg) < 400, there is T € X such that

J(Z) + ed(xo,T) < J(zo) and J(z)+ed(z,z) > J(Z) Vr € X and x # 7.

Then, sequence convergence results are presented as Corollary .14l and Theorem
BI7 by this abstract existence-convergence result. Denote K = {u € B|0 € 0J(u)}
and K, = {u € B|0 € 0J(u), J(u) = c}, where J is a locally Lipschitz continuous
functional in Banach space B. If J satisfies the PS condition, K. is compact.
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Theorem 3.12. Let H be a Hilbert space with H = L& L' for a finite dimensional
subspace L C H and U =V N Sp. # 0, where V. .C H is open. Assume that an
upper semi-differentiable locally Lipschitz continuous functional J satisfies the PS
condition and an L-1 selection p of J satisfies:

(a) p has super-linear property in U and p is continuous on U, where U is the
closure of U on Sy,

(b) infyep d(p(v), L) > a >0, and

(c) inf,cog J(p(v)) > ¢ = inf,ey J(p(v)) > —oo, where OU is the boundary of
U on Sp..
Then, K? = p(U) N K. # 0, where p(U) = {p(u)|u € U} and for any {v*} C U
with J(uF) — ¢, where u* = p(v*), we have

lim d(u®, K?) = 0.

k—o0
Proof. Define

oo = 00 58

Then, J (p(+)) is upper semicontinuous and bounded from below on the complete
metric space Sy1. By assumption (c), either there is v € U such that J(p(v)) = ¢
or there is a sequence {v*} C U such that J(p(v*)) > ¢ and J(p(v*)) — ¢. For
the first case, p(v) € KP = p(U) N K. by Theorem Of course, K? # (). For
the second case, denote uf = p(v¥). Applying Ekeland’s variational principle to

J(p(+)), for every v* € U and 6% = (J(uF) — ¢)2, there is ©* € Sy such that
(3.7) J(p(@")) = J(p(v)) < O"|" —o| Vo€ S,
(3-8) J(p(")) = J(p(*)) < —6"|o" —".

By (B8), the definition of J(p(-)) and v* € U, we have o* € U and then, from (3.7)
and (B.8),

(3.9) J(p(@") = J(p(v)) < &o" —o| VweU,
(3.10) J(p(@*) = J(p(v*)) < —d"||o" ="

It follows

(3.11) ¢ < J(p(a*)) < J(u*) = 8*[|* =",
(3.12) |[oF — || < 8.

Then, by BI0) and B12), J(u*) = J(p(v*)) — ¢ implies J(p(v*)) — c. Thus, by
assumptions (b) and (c), we have v* € U and

(3.13) d(p(®®),L) > a >0

for large k. For these large k, if there is nonzero z¥ € 9.J(p(v*)) N [L,o*]*, then,
when s is small, by Lemma 2.14]

J(p(v"(s))) = J(p(v")) < —ZlfklllkaI,
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ks vt + sw” k con () 25 (kY _ phok ok ok
where 97 (s) = ToF & suf] e U, w" = —sign(¢ )Ilikl\’p(v ) =t"v"+w" and w” € L
and by Lemma [2.4]
k k k
& & VR 4 sw & 2||sw”|| 2s
— = _ - < < 4 5
||’U (S) v H || ||1)k +ka|| v || = ||1)k +ka|| =1_5- S

i.e.,
_ _ [T AT _

T () ~ J(p(E)) < ~al 22 (s) — ],
by (BI3). Hence, by ([B9), we have
16
3.14 7| < —oF,
(3.14) 125 < —
which implies z¥ — 0. Then, by the PS condition, {p(v*)} has a convergent sub-
sequence {p(v¥7)}. Since {p(v*/)} is convergent, v*i € S; . and w* € L, {tFivki}
is convergent, i.e., we can assume {t*i} and {9%i} are both convergent by (B.I3).
Denote ¥ = lim;_,, #%. By (f) in Proposition [L7 and BI4), 0 € 8J(p(v)), i.e.,
p(v) is a critical point and by BI2)), ¥ = lim;_,o v*i. By assumption (a),

p(0) = lim p(v*) and J(p(v)) = ¢
j—oo
and then, by assumption (c), it is clear that
v €U and u = p(v) € K? # 0.
For any {v*} C U with J(u*) — ¢, where u* = p(v*), let 8 be any limit point of
{d(u*, KP)} and u* = p(v*i) € {u*} such that lim;_,, d(u®i, KP) = B. If there
is a subsequence {u”i:} C {u*i} such that J(u*i) = ¢, then, by Theorem [ZI6]
ukii € KP, i.e., B =0. Otherwise, we can assume J(u*7) > ¢, j = 1,2, .... Consider
{u*i} as {uF}. To {u*3}, by using above argument for {u*}, we know there is a
subsequence {u*i } C {u*} such that @ = lim; p(vy,,) € K2, ie., B =0. Thus,
every limit point of {d(u”*, K?)} is zero, i.e.,
Jim d(u*, K?) = 0. O
— 00

Remark 3.13. Comparing this theorem with Theorem 3.5 in [l5], we assume super-
linear property of p in U and continuity of p on U, where U is the closure of U
on Sy in this theorem instead of continuity of p on U, where U is the closure of

U on Spi in Theorem 3.5 in [15]. By Lemma I3l if J € C'(H,R), these two
assumptions are equivalent.

Corollary 3.14. Let H be a Hilbert space with H = L& L* for a finite dimensional
subspace L C H and V1, Vo C H two open sets with ) # Uy = VoNSpL C VNS, =
Uy. Assume that a upper semi-differentiable locally Lipschitz continuous functional
J satisfies the PS condition and an L-L selection p of J satisfies:

(a) p has super-linear property in Uy,

(b) inf e, d(p(v),L) > a >0 and ¢ = inf ey, J(p(v)) > —o0,

(c) there is d > 0 with

inf{J(p(v))|v € Uy,d(v,0U;) < d} = a > b= sup{J(p(v))|v € Us},

where OU; is the boundary of Uy on S,

(d) given {vi} such that vi € Us, ||vgs1 — vkl < d, J(ugs1) < J(ux) and {ug}
has a subsequence that converges to a critical point ug, where ux, = p(vy), and

(e) K =p(U1) N K C K., where p(Ur) = {p(u)|u € Ur}.
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Then,
lim d(ug, K?) = 0.
k—o0

Proof. First, we prove that vy, € Uy and d(vg,0U;) > d, k = 1,2,.... In fact, if
vg € Up, d(vg,0Ur) > d and J(ug) < b, then, by assumption (d), vg41 € Uy and
J(ugs1) < b, ie., vgy1 € Uy and d(vgy1,0U7) > d by assumption (c). Thus, since
vy € Uy, we have v, € Uy and d(vg,0U;) > d for k = 1,2, ..., by assumption (c).
Since K? = p(U;) N K C K, and {ux} has a subsequence which converges to a
critical point ug, we have ug € K? # (). Denote U = {v € Uy|d(v,0U1) > d}. Then,
by the monotonicity of {J(ug)}, we have J(ux) — ¢ = inf,cpy J(p(v)) as k — oo,
and
inf J(p(v) > a > b> J(pen)) > ¢ = inf J(p(v))

vedU
where QU is the boundary of U on S;.. Thus, all assumptions of Theorem
are satisfied and the conclusion follows. O

Remark 3.15. Comparing this corollary with Corollary 3.6 in [15], we assume super-
linear property of p in U; in this theorem instead of continuity of p in U; in Corollary
3.6 in [15]. By Lemma 13} if J € C'(H,R), these two assumptions are equivalent.

To better understand Corollary B.14] we give the following lemma.

Lemma 3.16. Let H be a Hilbert space with H = L & L+ for a finite dimensional
subspace L C H and V1, Vo C H two open sets with O # Uy = VoNSpL C VNS, =
Uy. Assume that an upper semi-differentiable locally Lipschitz continuous functional
J satisfies the PS condition and the SC-condition, an L-1 selection p of J satisfies:

(a) p has super-linear property in Uy,

(b) infyey, d(p(v), L) > a >0 and ¢ = inf,cpy, J(p(v)) > —o0,

(c) there is d > 0 with

inf{J(p(v))|v € U1,d(v,0U;1) < d} = a > b=sup{J(p(v))|ve Uz},

where OU; is the boundary of Uy on Sy, and {vF} is a sequence generated by

the L-1 algorithm according to the L-1 selection p with initial point vl € Uy and

A€ (0, #'12). Then, ||vE+Ht —oF|| < d, J(ukH) < J(uF) and {uk} has a subsequence
0

n’

where uf = p(vk).

that converges to a critical point u -

Proof. First, by Lemma 24l we have
U Spwy
[[og, + shwyl

2||sEwk|| 2sk 2\

vk 4+ skwk|| — |1 —sk] —1-X"

lo*t =l = |

ok < i

Then, A € (0, ﬁ) guarantees

log ™ = o]l < d.
Since the L-L algorithm is a descent method, we have

J(up ) < J(uy).
Consider {vX} as {vx}. By exactly mimicking the verification of Corollary B.14 to
{vi}, we can show that

{v*} c U = {v € Uy|d(v,0U;) > d},

where OU; is the boundary U; on Sp.. Thus,

{UZ} - Ul?
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where {v£} is the closure of {vf} on Sy 1. Then, by exactly mimicking the verifi-
cation of Theorem [0, we can prove that {u’} has a subsequence that converges
to a critical point u2. (]

By Corollary B.14] and Lemma B.I6] Theorem B.I7 immediately follows.

Theorem 3.17. Let H be a Hilbert space with H = L& L' for o finite dimensional
subspace L C H and V1, Vo C H two open sets with ) # Us = VoNSpL C VNS, L =
Uy. Assume that an upper semi-differentiable locally Lipschitz continuous functional
J satisfies the PS condition and the SC-condition, an L-1 selection p of J satisfies

(a) p has super-linear property in Uy,

(b) infyep, d(p(v), L) > a >0 and ¢ = inf,cp, J(p(v)) > —o0,

(c) there is d > 0 with

inf{J(p(v))|v € Ur,d(v,0U;1) < d} = a > b=sup{J(p(v))|v € Us},

where OU; is the boundary of Uy on Si1, and
(d) K =p(Ur) N K C K., where p(U1) = {p(u)|u € U1},

and {vF} is a sequence generated by the L-1 algorithm according to the L-1 selec-

tion p with initial point vl € Uy and X € (0, ﬁ). Then,

lim d(u®, K?) = 0.
k—o0

4. NUMERICAL EXPERIMENT RESULTS

As we pointed out before, a typical example on application of nonsmooth critical
point theory to partial differential equations is the Dirichlet problem (L)), i.e.,

—Au(z) = f(z,u(x)), z € Q,
u()|zea0 =0,
where Q is an open bounded domain in R™ with smooth boundary 09, f(z,t) is

a measurable function defined on  x R and for every = € Q, f(x,t) is locally
bounded. The corresponding variational functional on Hg(Q) is

(4.1) () = % IVu()|Pda — / Pz, u(z))dz,
Q
where F(x,t) fo z,s)ds. Denote G(u) = [, F( ))dx. By Theorem [[.3] to
find a ug € HO (Q) such that
—Aug(x) € [f(x,uo(@)), (@, uo(x))]

for all z € , we can find a critical point of J ([@I). As a numerical example, we
set

| calz|" |72, i |t > 1,
(42) f(x,t) - { Cﬁ‘$|r‘t|ﬁ_2t, if |t| < 17
where ¢ > 0, a > 8 > 2, a < % for m > 3, r > 0 and |z| is the Euclidean

norm of x € R™. If¢c=1, a =8 > 2 and r = 0 in (£2)), the Dirichlet problem
(1) is the Lane-Emden equation and if c =1, « = § > 2 and r > 0 in ([£2), the
Dirichlet problem (LIJ) is the Hénon equation. These two equations were used as
numerical examples for finding smooth saddle critical points [6], [I0], [T1]. If » > 0,
a>f>2and a < 2% for m > 3, J ([@I) is locally Lipschitz contlnuous and

it is not differentiable everywhere. If ¢ > 0, 7 > 0, a > 8 > 2 and a < =75 for
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m > 3, it is easy to check that f(x,t) in (£2) satisfies all assumptions in Theorem
Thus,

| c|x|"|gl, i [ > 1,
(4.3) F(z,t) = { cle|" |8, if |t < 1,

and
(4.4) 0G(u) = {¢ : @ — R|¢ is measurable, ((z) € f1(z,u(z)) Vo € Q},
where

(@) = [fla,u(z) - 0), f(z,ulz) +0)]
{calz|"[u(@)|* u(z)}, if [u(z)| > 1,
{cBla|"[u(z)|"?u(@)}, if Ju(z)] <1,
[cBlx|", calz|"], if u(z) =1,
[—calz|", —cB|z|], if u(z) = —1.
f(z,t) in @2) with « =6, 5 =4, r =0 and ¢ =1 is an example in [13].
Before we discuss the details on numerical experiment, we establish several lem-

mas for J (@I]).

Lemma 4.1. Assume that L = {0}, f(x,t) is a measurable function defined on
Q X R and satisfies:

(a)

. 0)] < Oy + Gt

forx € Q andt € R, where 0 < 0 < %form2370>0f01"m=1,2 and
C1,Cy > 0 are two constants,

(b) G(tv) > 0 and G(tv) = o(t?) ast — 0 and t — oo, for every v € Sp..
Then, the peak mapping

P(v) = {tv|t > 0 such that J(tv) = max J(sv)}

is well defined on Sy 1, i.e., P(v) # 0 for each v € Sy ..

Proof. First, similar to Lemma[3.0] assumption (a) guarantees that J (@1 is locally
Lipschitz continuous on H}(Q). Then, denote I(t) = J(tv) for v € Sp.. Since
G(tv) = o(t?) as t — 0, we have

1 G(tv) 1 G(tv)
I(8) = 2(= 2, Glv)y o 1 GQv)
t)y=t (2 Q|Vv(ac)| dx e )=t (2 e )>0
as t > 0 is small and since G(tv) > 0 and G(tv) = o(t?) as t — oo, we have
1 G(tv)
— 4202 _ _
I(t)=t (2 2 ) = —00

as t — +oo. Thus, by the continuity of I(t) and I(0) = 0, there is at least one
t, > 0 such that ¢, is a local maximum point of I(t), i.e.,

P(v) = {tv|t > 0 such that J(tv) = max J(sv)} # 0. U
Remark 4.2. For our numerical example, by ([Z2]), -
(@, 1) < C1+ Coft|*,

where C7 = ¢fb", Cy = cab” and b is a bound of Q and by {@3), G(u) =
Jo F(x,u(x))dx satisfies that G(tv) > 0 and G(tv) = o(t?) as t — 0 and t — oo,
for every v € Sp..
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Lemma 4.3. Assume that L = {0}, J (@I is locally Lipschitz continuous on
H} (), the peak mapping P(v) = {tv|t > 0 such that J(tv) = maxs>qJ(sv)} is
well defined on Sp., F(x,t) is reqular (cf. [7]) at every t € R for x € Q and

satisfies that w is monotone in the sense that for any |ta| > |t1] > 0, any
51F((E,t1) € 8F(9c,t1) and 52F(.’£,t2) € 8F(£L’,t2),

(52F(£L‘, tz) > (52F(£L‘,t1)
ta ty

forx e Q and x # xq,..., 2y,
where x1,...,xx € Q and OF (x,t) is generalized gradient of F(x,-) at t for fized
x € Q. Then, the peak mapping

P(v) = {tv|t > 0 such that J(tv) = max J(sv)}

is single-valued for every v € Sy, i.e., for every v € Sy, P(v) = {p(v)}, where
p(v) = tyv for some t, > 0.

Proof. Since F(z,t) is regular at every t € R for = € {2, we have
. / 5F (2, to())u(2)dz|6F (2, tv(x)) € OF (2, )|s—ro(m) )+

where I(t) = J(tv) for every v € Sp.. Hence, 0 € 9I(t,), where t,v € P(v), i.e.,
there is 6 F'(x,t,v(x)) € OF (x,5)|s=¢,v(x) sSuch that

/Q (r)dr =1.

t,v(x)
By monotonicity of =—== aF , if to > ty,
F F
/ OF(, tov(z)) (m’tov(x))UQ(:E)dx >/ OF (@, tyv(x)) (x’tvv(x))UQ(x)dle
o tov(z) o  to()

and if 0 < tg < t,,

5F(x,t0v(z))v2 N 5F(x,tvv(z))v2 Vo —
/97 (2)d </Q— (@)dz = 1.

tov(w) tyv(x)

Thus, such ¢, > 0 is unique, i.e, the peak mapping P is single-valued for every
RS SLL. O

Remark 4.4. (a) To our numerical example,

{calaz|[t|*>t}, if [t] > 1,
_ ) Al 2y, if [t <1,

(45) OF@ D=9 [Blal, cale],  ift=1,
[—calz|", —cB|z|"], ift=-1.

Hence, for any |t3| > |t1], any 61F(z,t1) € OF(x,t1) and 02 F(x,t2) € OF (z,t2),

(52F($,t2) > (52F($,t1)
to t1

(b) Lemma [Tl and Lemma 3] guarantee that
infyes, , J(p(v)) 20,

forz € Q and x # 0.
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where p is the peak selection of J (@I w.r.t. L = {0} with p(v) = tv, ¢ > 0 for
v € S, under assumptions in Lemma 1] and Lemma Indeed, if the peak
mapping of J @I w.r.t. a finite dimensional space L C H} (),

P(v) = {tv + w|t > 0 and w € L such that J(tv + w) = max J(sv+u)},
$>0,u

is well defined, then,
infyes, , J(p(v)) =0,

where p is a peak selection of J (@I w.r.t. L such that p(v) € P(v) for every
v € Sp1, under assumptions in Lemma [£.]] and Lemma [£.3]

Lemma 4.5. Assume that L = {0}, J (@I is locally Lipschitz continuous on
H} (), the peak mapping P(v) = {tv|t > 0 such that J(tv) = maxs>oJ(sv)} is
well defined on Sy, P(vg) = {uo} where vg € Sp1, t =0 is not a maximum point
of J(tvg) on {t € R|t > 0}, F(x,t) = Fi(z)Fs(t), 0 < Fi(z) < C for every x € Q
where C' > 0 is a constant, F»(t) is reqular at every t € R and satisfies that, for
every dFy(t) € OF(t),

(SFQ(t)t Z a1|t|“ + as,

where pn > 2, p < % form > 3 and a1 > 0, ae are two constants. Then, any
peak selection p(v) is continuous at v, where p(v) € P(v) forv € Sp1 and p(v) is
a global mazimum point of J @) on {tv|t > 0} for v € Sp1 around vg.

Proof. Since Fy(t) is regular at every t € R, we have
(4.6) oI(t) = {t — | Fi(x)dFs(tv(z))v(z)de|dFay(tv(x)) € OF2(S)|s=tv(z)}
Q

where I(t) = J(tv) for v € Sp1. Suppose that v, — vg. Denote that p(v,) = t,vn,
t, > 0 and p(vg) = tovg, to > 0. Then, 0 € 01,(¢,), where I,(t) = J(tv,). By
(@3], there is 6 F5(t,vn(x)) € OF2(S)]s=t, v, (x) Such that

t, — /QFl(:c)éFg(tnvn(x))vn(x)dx =0.
Thus,
1= %/QF1(a?)éFQ(tnvn(a:))tnvn(:E)dx > %/S)Fl(x)(aﬂtnvn(x)w + ag)dz,
(4.7) 1> al\lp(vn)H”_Q/{2F1($)|Un(93)\“d93 = Ip(vn)|72C|Q a2,

where || is the measure of 2. Suppose that {t,} is unbounded. Then, there is
{tn, } such that t,, — 400, i.e., |[|[p(vn,)|| = +o0. Since v,, — vy, this contradicts
(@). Hence, {t,} is bounded. Without loss of generality, we can assume that
t, — t. Then, since p(v,) is a global maximum point of J (@I) on {tv,|t > 0}
for large n, tvg is a maximum point of J (LI)) on {tve|¢t > 0}. On the other hand,
Since P(vg) = {uo} and t = 0 is not a maximum point of J(tvg) on {t € R|t > 0},
uy = tovg = tvg. Hence, t = tg, i.e., p(v,) — p(vo), i.e., p(v) is continuous at
V9. |
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Remark 4.6. (a) For our numerical example, Fy(z) = |z|", r > 0,

_ e it > 1,
P = e 20
and
{ealt|*72t}, if |t| > 1,
_ ) {eptPRey, it < 1,
OFy(t) = [eB, cal, ift=1,

[—ca, —cf], ift=-—1.
Thus, for every 0F»(t) € 0F»(t),
(SFQ(t)t 2 041|t|’8 + as,

where a1 = ¢f and as = 0.

(b) For our numerical example, Lemma [ Lemma 3 and Lemma guar-
antee that the peak selection p(v) = tv, where t > 0 and J(tv) = maxs>¢ J(sv), is
continuous on Sy ., where L = {0}.

Lemma can be extended to the following theorem and the theorem can be
verified in the same way as Theorem 4.1 in [I0]. On the other hand, this theorem
extends Theorem 4.1 in [10].

Theorem 4.7. Assume that L C H(Q) is a finite dimensional space, J @) is
locally Lipschitz continuous on HE(SY), the peak mapping of J @I) w.r.t. L,

P(v) = {tv + w|t > 0 and w € L such that J(tv + w) = max J(sv+u)},

is well defined and P(vg) = {ug} where vy € S+, (0,w) is not a maximum point of
J(tvg+u) on {t € R|t > 0} x L for anyw € L, F(x,t) = Fi(z)Fa(t),0 < Fi(z) < C
for x € Q where C > 0 is a constant, Fy(t) is reqular at every t € R and satisfies
that, for every §F»(t) € OF(t),

(SFg(t)t > a1|t\“ + as, Vx € Q,

where > 2, p < TZTQ form > 3 and a1 > 0, ae are two constants. Then, any

peak selection p(v) is continuous at v, where p(v) € P(v) forv € Sp1 and p(v) is
a global mazimum point of J [@I) on {tv+ w|t > 0,w € L} for v € Sy around
Vo .

Lemma 4.8. Assume that L = {0}, J (@) is locally Lipschitz continuous on
H} (), the peak mapping P(v) = {tv|t > 0 such that J(tv) = maxs>qJ(sv)} is
well defined on Sp1, F(x,t) is reqular at every t € R for x € Q and satisfies that,
for every §F(x,t) € OF (x,t) where OF(x,t) is generalized gradient of F(x,-) at t
for fized x € €,

k
(4.8) SF(z,t)t < at® + > bilt|*, Vo € Q,

i=1
where 0 < a < A1, A1 is the first eigenvalue of A on QU p1, .oy P > 2, P1yeees P <
% form >3 and p1, ..., pg, b1 > 0,....,br > 0 are constants. Then, there is a > 0
such that d(p(v), L) > «, where p(v) is a peak selection such that p(v) € P(v) for
v e SLL .
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Proof. Since F(x,t) is regular at every t € R for z € Q, we have
O1(t) = {t ~ | 5P (@, to(w))o(a)daloF (z.to(2) € OF (2,9)] oo}
Q

where I(t) = J(tv) for v € Sp.. On the other hand, according to (£8]), we have

/QéF(x,u(:c))u(x)dxg/ P dx

Q

k
(a(u(@))® + ) bilu(z)
=1

IN

k
a)\fl/ |Vu(;v)|2da:+Zbici(/ \Vu(z)|2dz) 7
Q Pl Q

k
= (aA;l + Z szZH’U,
i=1

P2l

where u = tv, 0F (x,u(z)) € OF(z,5)|s=u(z) and ci, ...,cx are constants. Thus, as
t > 0 is small,

k
SI(t) > (1—aki+ Y bict” )t >0

=1

for any 6I(t) € 9I(t). Hence, there is o > 0 such that d(p(v), L) = |[p(v)|| > « for
any peak selection p(v) such that p(v) € P(v) for v € Sp1. O

Remark 4.9. To our numerical example, OF (z,t) is given by (£3]). Hence, for every
0F (z,t) € OF (z,1),

OF (z,t)t < at® + by [t|® + by|t|*, Yz € Q,

where a = 0, by = ¢8b", by = cad” and b is a bound of €. Hence, to our numerical
example, there is @ > 0 such that

d(p(v), L) > a,

where p is the peak selection of J @I w.r.t. L = {0} with p(v) = tv, ¢ > 0 for
v E SLL.

To super-linear property of peak selection to J 1) with f(z,t) [@2), we have
Theorem B8l For verifying this theorem, we need Lemma EI0HLemma E.I6 to
get Theorem [.T7l Then, Theorem I8 can be obtained by Theorem ETI7

Lemma 4.10. Assume that L = {0}, f(x,t) is in @2), p is a peak selection of J
1) defined on Sp1, p(w) = tyw, ty >0 forw € Spi, p is continuous at v € Sy
and {v,} C Sp1 satisfies ||v, —v|| <1, v, = v and

‘tn - t|

4.9 —_—
(4.9) Ton — o]

— 400,
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where p(vy,) = tpvp, tn, >0, p(v) =tv, t >0 and By = % + ap, ap € (0, %} Denote

AT = {z € Q||tv(z)| > 1, |tpvn(x)| > 1},

AL ={x € Ql|tv(x)] > 1, [thun ()| =1}, AL = {x € Q|jtv(z)] > 1, [tau,(2)] < 1},
By = {z € Q|jtv(z)| = 1, |tphon(z)| > 1},

By ={z € Qlltv(z)| = 1, [tavn(z)| = 1}, By ={z € Qlftv(z)| = 1, [tyvn(2)] < 1},
CT =A{z € Q|tv(x)| < 1, [thvn ()| > 1},

CY ={z € Qtv(z)| < 1, |thvn(z)| =1}, CF ={z € Q|ltv(z)] < 1,|thvn(z)| < 1}.

Thus,

(a) if ABUATUBE £ 0 forn =1,2,..., then, either there is {t,,} such that
t > tp, or there is {tn, } and a constant C > 0 such that t < t,, and

/ [ty Uy, ()| da < ng‘;,

"k

where Q,, = A3* U AZ* U Bg*,
(b) if By # 0 for n = 1,2, ..., then, either there is {t,} such that t > t,, or
there is {t,, } and a constant C' > 0 such that t < t,, and

/Bnk [tn, Un, (z)|dx < C’sfi‘,’c,

2

where vy, = ﬁ(v Snndng)s ldnl =1, (dn,,,v) =0 and s,, > 0.
"k

Proof. (a) Since |lv, —v| <1 and
lon = vl1* = {on = v,00 = v) = [Joall* + V]I = 2(vn, v) = 2 = 2(vn, v),

we have (v,,v) > 3. By Lemma T2 there is unique d,, with ||d,|| =1, (d,,v) =0
and s, > 0 such that

1
(4.10) Uy = ——=(v — $pdy).
V1+s2
Then,
52 S
Up —V = —

- dn7
Vit 1+ /1152 Jits2

i.e.,
Up — 0
| I= ~/1+ \/1-1-\/14—32
Thus,
T il Y
n— o0 Sn
Hence, by (£9),
tn, — 1
(4.11) D, = | 5 | — +o0.

Sn
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By (@I0), we have

tpUn

1
— (t,
\/1+8%(

= to—(t—tn)v—tpd,Sp —

1

V1+s2

U —tndnsn) = (tnv — thdnsn) + ( — 1)(thv — thdnsn)

(tnv — tndps,)s?
f(sn) ’

ie.,

thvs?  tpdys

(4.12) tutn = tv = (¢ = tn)v = tndusn = Foo3 + o055

where f(s,) = /1 +s2(1+ /1 +s2).

For every x € A} U A%, we have either tv(z) > 1, [t,v,(z)| < 1 or tv(z) < —1,
[tnon(x)] < 1. If tv(x) > 1, [thvp(x)] < 1 and ¢ < t,, then, by (@II) and (£I12),
there is nq > 0 such that n, is independent of x and as n > ny,

_%(t — tn)v(@) — 2t |dn (2)] 51
< —(t—t)0(@) — tdn(T)sn — tn})((il); = tn|dn ()]s
o) e _ tav(x)ss  tndn(x)s,
< (= tp)v(z) — thdn(x)s, F(sm) =+ f(sn)

= tpop(z) —tv(x) <0,
i.e.,
[tn, — t||v(z)] < 4t |dp ()] Sn-

If tv(z) < —1, [thon(x)|] <1 and ¢t < t,, then, by [@II)) and @I2]), there is ny > 0
such that ng is independent of z and as n > no,

_%(t — t)0(@) + 2t |d ()] 50
) tndn (2)s)
> gt = tn)o(@) — tadn(r)sn + =

> —(t—tp)v(x) — tpdn(x)s,

= tyup(z) — tuv(z) > 0,

i.e.,
[tn — t|jv(x)] < 4tn|dn(x)|Sn.
Thus, Vo € A% U A%, if t < t,, and n > max(ni,ng), we have
[t — t]Jv(x)] < 4tn|dn(x)|Sn-

Similarly, Vo € BY, if t < t,,, there is ng > 0 such that ns is independent of x and
as n > ng, we have

[tn, — tl|v(2)] < 4t |dp ()] Sn-
Hence, Vx € A3 U Ay U BY, if t < t,, and n > max(ni, nz2, ng), we have
(4.13) [tn, — tl|v(2)] < 4tn|dn(2)]Sn.
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The inequality ([£I3) means, if ¢ < t,, and n is large,

(4.14) |tn, —t|/ x)|de < 4t, sn/ |dy (z)|d,
Qn
where Q,, = Ay U A} U BY. By ([@I4), if t < ¢, and n is large,

It, — t| ~ Jo, lv(@)|dz
- <43n2°‘°tn/ (@) (22

n

. v dx
< a5t Jdao)Pdn)([ 1o 3 |ﬁ ey
Q Q 0

n n

tv(x)|dx
< 4s;2a°tnt(/ |dn(x)|2dx)%|9n| fQ‘Tﬂ—l
tv(x)|dx
< 4s;2a°tnt)\fl|9n| fQ‘Tﬂ_l,

where \; is the first eigenvalue of A on Q and |{,| is the measure of €, and by

@II) and @I4), if ¢t < t, and n is large,

Bo
0, = / dxg/ |tv(w)\dx<4tnt|t5" t|s};6°/ \d, ()| dx
- Qn
— 452 Ds / )|z < 453t D DI NES

ie.,
|Q2,] < s,ll_%‘o.

Then, if t < t,, and n is large,

_ dx
|tn6 t‘ < 4 3O¢0t t>\1 fQ )‘ ,1,
s2o ﬂo
ie.,
fQ |tv |d.’L‘ 1 34, 1 |tn — t| 1 L _3ap 1 1
T <4s; tntAL ( o )_ = 4s? totA] D, .
Sn

Thus, since ag € (0, ¢, by @), if ¢ < t,, and n is large,

(4.15) / tv(z)|dz < Ds?,
Q

n

where D is a constant. By ([@I0) and @IH), if ¢t < ¢, and n is large, then

tpvn(2)|de = —— / 1+ s2v,(x)|dz
 tmentlae = s [ VT )

t
_nQ/ /I F 520n (@) + ndn )|dx+/ (sndn (2)|d)
V1452 Ja, o

t 1 1
—"til/ tv(x dI+SnQn§/ d,(z)|?dz)?
m( szn| ()] €22 ( Qn| (z)[°dz)?)

tn 1150 iy-1 Bo

IN
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where C' > 0 is a constant. Hence, either there is {¢,,} such that ¢t > ¢,, or there
is {t,, } and a constant C' > 0 such that ¢ < t,, and

/ [tn, Un, (@) ]dr < ng‘;,

ny

where Q,, = AJ* U AZ* U By*.
(b) The conclusion can be verified in the same way as (a). O

Lemma 4.11. Assume that L = {0}, f(x,t) is in [@2), p is a peak selection of J
1) defined on Sy, p(w) = tyw, t, >0 forw € Spo, p is continuous at v € Sp1
and {v,} C Sp1 satisfies ||v, —v|| <1, v, = v and

‘tn — t|

— =
on — o]0 7%

where p(vy) = tpUn, tn, > 0, p(v) = tv, t > 0 and By = %—i— ag, ag € (0, %}
AP B CP, i =1,2,3, are defined in Lemma EI0L Thus,

(a) f CPUCTUBY #£ 0 forn =1,2,..., then, cither there is {t,, } such that
t < tp, or there is {tn, } and a constant C' > 0 such that t > t,, and

/|mmwg@%

Qny,

where Q,, = CT* UCY* U BT'*,
(b) if By # 0 for n = 1,2, ..., then, either there is {tn, } such that t < t,, or
there is {tn, } and a constant C > 0 such that t > t,, and

/Bnk [tv(z)|dx < C’sfi‘,’c,

2

where vy, = ﬁ(v — $ndn), lldn,ll = 1, (dn,,v) =0 and s,, > 0.
nE

Proof. (a) Similar to Lemma [£.10] there is unique d,, with ||d,| = 1, {(d,,v) =0
and s, > 0 such that
1

4.16 Uy = ———(v — spdy,
and

_ [t =t
(4.17) D, = 850 — +00.

By (@.14),
v=1/14 820, + Spdp.

Then,

tv = \/1+ s2to, + tdys, = (ton + tds,) + (V1 + s2 — Dtuy,
ie.,
(4.18) t0 =ty + (t— tn) vy + tdnsp, + tun sy

1++/1+s2
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For every z € C7 U C7, we have either [tv(z)| < 1, tpo,(x) > 1 or |tu(z)| < 1,

thon(x) < —1. If [to(x)] < 1, tho,(z) > 1 and ¢ > t,, then, by (LI7) and (ZIF),
there is nq > 0 such that n, is independent of x and as n > ny,
to, (x)s?
t—tp)vp(x) +tdy(z)s, < (t—t,)vp(x) +td,(2)s, + ———2—
(6= o) b < (0= ba)eni) + (o + 2
= tu(x) —thun(x) <0,

ie.,

[tn = tl|von (2)] < t|dn(z)|sn-
If |tv(z)] < 1, tho,(x) < —1 and ¢ > ¢, then, ([II7) and ([EI8), there is ny > 0
such that ng is independent of z and as n > ng,

L 1) 0n(@) + tdn(@)sn > (= t)on(z) + tln(@)m + — 2230
2 1+/1+s2
= tv(z) — tyua(x) > 0,

ie.,

[tn, — tl|on(2)] < 2t|dn(x)]Sn.
Thus, Vo € C} UCY, if t > t,, and n > max(ny, na), we have

[tn, — tl|on (2)] < 2t|dn(x)]Sn.
Similarly, Vo € B7, if t > t,,, there is ng > 0 such that ng is independent of z and
as n > ng, we have

[t — t]|vn ()| < 2t|dn(z)]Sn.
Hence, Vx € C}*UCy U BT, if t > t,, and n > max(ni,ne, n3), we have
(4.19) [t — t||vn ()| < 2t|d,(z)]$p-

The inequality means, if ¢ > ¢,, and n is large, then

(4.20) tn —t|/ lvn (2)|dr < 2tsn/ |dp (z)|d,
Qn

n

where Q,, = C7 UCy U BY. By ([@20), if t > t,, and n is large,

t, —t vp () |dx
|7LB ‘<28;2a0t/ |d fQ |" | )71

sh? Q,

1 Un dl‘
< st [ o)) / f'%)

n

tnUn dx
< 2s;2°‘°tnt</ [y () [2d) 3|2, % “#)
tovn(T)|dx
< 25;2a°tntAf1\Qn| ffz'#)—a

where Ay is the first eigenvalue of A on Q and |Q,,| is the measure of €2,,, and by

BIT) and @20),

Bo
/ dz < / (v (2)|da < 2tpt—n k=P / |dn(2)|dz
Q. Q. [t — 1| n

= 252 ™4,tD; / )|dz < 252t DAY,

|20
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i.e.,
|Q,| < sh720,
Then,
bt o 3 se, e ltava(@)lde
|nﬁo |§2S721 ozotnt( Qp = ) 17
Sn Sn
i.e.,

an [t vn(z)|dz
sﬁo
n

|t — 1]
sﬁo

1_ 1_
<252 2%, 1( )L =252 2t tD L

Thus, since ag € (0, ], by @I7), if t > ¢, and n is large, then
(4.21) / |tnvn (z)|dz < DsPo,
Qp
where D > 0 is a constant. By (18) and (£21)), if ¢ > ¢, and n is large, then

/Q |tv(a:)|da:§/ |t(v(w)—sndn(x))|da:+/ [tsndy, (x)|dz

n Qn Qn

tt;1\/1+s%/ |tnvn(x)|dx+t|§2n|sn(/ \d,, (2)[?dz)?
Qn n

v

IN

<t D1+ 82850 4 Qs < Os,

where |Q,,] is the measure of 2, and C' > 0 is a constant. Hence, either there is
{tn,} such that t < t,, or there is {¢,, } and a constant C' > 0 such that ¢ > ¢,,
and

/ [tv(z)|dx < C’sg‘;,

Q,,
where Q,,, = C7"* UC3* U BY*.

(b) The conclusion can be proved in the same way as (a). O
Lemma 4.12. Assume that L = {0}, f(x,t) is in @2), p is a peak selection of J
1) defined on Syp1, p(w) = tyw, ty >0 forw € Spi, p is continuous at v € Sy
and {v,} C S satisfies ||v, —v| <1, v, = v. Denote p(vy,) = tyvy, t, > 0 and
p(v) =tv, t >0. A", B, CF, i = 1,2,3, are defined in Lemma EI0l Then,

(a)

Gy + G + G5 + Gy = A,

where
A, =AF + A% + A
with
Al = catz/ lz|"U™ (o) (x)dx, A° = c(B+ kn)tﬁ/ |z|"U™(8)(x)dz,
of 0o

Ay =Bty [ [l (B) @)z, U)ol = bl for 3 >0,
Q,
and
QF =ATUBrUCT, QY = AZUByUCY, Q. = AYU B} UCY,
kn €10, — 3],
F=Gy 4Gy G - ()
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with
Gr' = cf"(a) / L alelfo(@)|*de, GF = cf™(8) / (B + k) ] "v(2)|Pda

Qo

n

and
Gy =cf"(9) [ Blallvla)Pda. (7)== £ for >0,
Qn
T=0+ 1+ 13
with
= ca/ |z|" [tv(x)|“dz — (B + kn)/ |z|"|tv(x)|[Pdx > 0,
Az Az
I = ca/ |z|"|tv(x)|“dx — 06/ lz|"|tv(x)|Pdz > 0,
Az Ap

and

I = ck/ |z|"|tv(z)|Pdz > 0,

By
kel0,a—0],
g =J +J3+J3
with
JP = cﬁ/ |z|" [tv(x)|P da —ca/ ||" |tv ()| dz,
cy cr
Jy = —ckn/ tv(z) | d,
3
and
i = c(3+k)/ | [tv()| P dee —ca/ (2| [fo()|da,
By By

and

B = c(k— k) / 2 o) P de,
BTI,

2

(b) there is a constant D > 0 such that, for every Q@ C Q C R™, v > 1 for
m=1,2 andl<’y§%form23,

(4.22) | / (27U () ()dz| < Dy,

as n is large and there is a constant D > 0 such that
|A,| < Ds,,

=1 — $ndyn), ||dnl| = 1, {dp,v) =0 and s, > 0.

where vy, = \/ﬁ(v
Proof. (a) Since p(vy,) = tyvn, tn, > 0 and p(v) = tv, t > 0, there are k,k, €
[0, — ] such that

2 C/Q+ af(z)dz — C/Qo (B+k)g(x)dz —c - Bg(x)dx =0,

where f(z) = |z|"[tv(z)|, g(z) = |2["[tv(2)|?, QF = {z € Qltv(z)| > 1}, Q° =
{z € Q|tv(z)| = 1} and O~ = {z € Q||tv(z)| < 1}, and
)

t%—c/ﬂ+ afn(x)dx—c/m (B+ kn gn(x)dx—c/ﬂ_ Bgn(x)dx =0,

n
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where f,,(z) = || [t v, (2)|* and g, (z) = |x\r\tnvn(x)\5, ie.,
ti—c/ afn(ac)dx—c/ (B + kn)gn(x)dx —c Bgn(x)dx = A
Qb Q0 Q5

where £, () = |a]"[tv(2)[* and gu(2) = [2]"[t,0(@)]".

By the first and third equality, after simple calculation, we can find that the
conclusion is correct.

(b) Indeed, as n is large,

| /Q 2] U™ () ()| = | /Q 2| on () ["dz — /Q 2" o()[ e

= (om0, m) 7 /Q 2] [on (@) ) ¥ — ( /Q 2l o(z) ")}

< 0w fol o) = ola) )
< 2 e e@ldn) T ([ ol lou(@) = v(o)P o)
< 21y /Q oo da) T ( /Q 2l on(z) = v(w)dw)
< 2 ([ @) T o) = o))t
< 2TOTMAP o - vl € O M
- <2c>7Mv||v||”-lﬁv
where ¢(vn,v,1) = 1( g [ [on (2)Vdz) T + (1 = n)(foy 2" [0(2) [1da) 7, 7 € [0,1],

M = SuPzeQ|x| ;

and C' > 0 is a constant, i.e.,
\/ |z|"U™ () (x)dx| < Dsy,

where D > 0 is a constant. Hence, as n is large,
[An| < AT+ AD] + AL | < et + (B + ka )ty + Bt) Dsy,

i.e., there is a constant D > 0 such that |A,,| < Ds,,. (]

Lemma 4.13. Assume that L = {0}, f(x,t) is in @2), p is a peak selection of J
1) defined on Sp1, p(w) = tyw, tyw >0 forw € Sp., p is continuous at v € Sp1
and {vn,} C Spo satisfies ||v, —v|| <1, v, = v. Denote p(vy,) = tpvn, tn, >0 and
p(v) =tv, t >0. A?, Bl C?, i =1,2,3, are defined in Lemma EI0l Then,

(a)

Hy + HY + Hy + Hi = =By,
where
B, =B} +BS+ B,
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with
Bl = cato‘/ lz|"U™ (a)(x)dz, BS = c(B+ k)tﬁ/ lz|"U™(B8)(x)dz,
ot Qo

By ot [ el U @) ahdz, U"(3) =[ol" = ol for >,
and
OF = ATUAPUAL, Q°=BlUB}UB}, Q =CrUCrUCE,
kel0,a— 0,
Hy = HY + HY + HY — f(2)
with

1" = (@) [ olel @) de. 55 = ef8) [ (34 Bal o) do.

and
Y =cf"(®) [ lalloa(e)Pde, f7(2) =6~ for >0,
o
H'=1IT+17+ 13
with
7' = ca/ ||" [ty vn (z)|%dx — C,B/ |2|" |tnvn (x)|Pdz > 0,
oy oy
= ckn/ |x|r|tnvn(x)|5dx >0,
cy
and

o= ca/ ([ [t (2)]*dz — (B + k:)/ & |tnon (2)]Pde > 0,
B™ B

1 1
kn €10, — 3],
HY =J¢ + J3 + J3

with
5= [ ol ltwun(@)Pds = ca [ ol tyvn (o),
A Az
Jy = —ck |x|r|tnvn(x)|ﬁdx,
By
and
Ty =B+ ) [ el (o) d = ca [ ol ey (0)|*d

A Az

and

HE = c(h — k)/ 2" tnvn (2)|Pda,
Bp

(b) there is a constant D > 0 such that
|B,| < Dsn,

1 — $pdyn), ||dnl| = 1, {dp,v) =0 and s, > 0.

where vy, = \/1+—2(U
S"'L
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Proof. (a) Since p(v,) = tpvn, t, > 0 and p(v) = tv, t > 0, there are k, k,, €
[0, — ] such that

t? — c/ af(x)dx — c/ B+ k)g(x)dz — ¢ Bg(z)dx =0,
ot Qo Q-
where f(z) = |z|"[tv(z)|* and g(z) = |z|"|[tv(z)]?, i.e.,
e[ af@de—c [ (3+0o@do—c [ fg.)s =B,
where f,,(z) = |z|"|[tv, (z)|* and g, (z) = |z|"|tv,(x)|?, and
t?z - C/ O‘fn(x)dx - C/ (6 + kn)gn(x)dx —C ﬁgn(l')d!E =0,
Qf Qo Qn

where f,(2) = |2|"|thvn (@)%, gn(z) = || [thva(z)|?, QF = AP UBPUCT, QO =
ABUBRUCY and Q = A U B2 U CY.

By the second and third equality, after simple computation, we should know that
the conclusion is true.

(b) By @22), as n is large,
|Bul <IBL|+ Bl + 1By ] < cat®™ + (B + k)t* + 5t7) Ds,

i.e., there is a constant D > 0 such that |B,,| < Ds,,. O
Lemma 4.14. Assume that L = {0}, f(x,t) is in @), p is a peak selection of J
1) defined on Sp1, p(w) = tyw, tyw >0 forw € Sp., p is continuous at v € Sp1
and {v,} C Spi satisfies v, —v| < 1, v, = v. Denote p(vy) = tpvn, t, > 0,
p(v) =tv, t >0 and o = %—i— ag, ag € (0, %] A2, B, C?P, i =1,2,3, are defined
in Lemma @10 If AL UAYUBE #0 and t > t, forn =1,2,..., then, there is a
constant Ly, > 0 such that

[t — 4 < Lo — v®.

Proof. Suppose that there is not a constant Ly > 0 such that
|t — 1] < L Jon, — vf|*.

Then, there is {v,, } such that

tn, — 1
lim Nt =8 = +o0.
=00 ||v, — v]|Bo
Thus, similar to Lemma [£.10,
tn, — 1
(4.23) % — o0,
Sny
where v, = ﬁ(v — $n,dn,), |dn, || = 1, (dn,,v) =0 and s, > 0.
n

First, by Lemma [L11] there are following four cases. In these four cases, {n;}
represents a subsequence of {n;}.

The first case is there are {C]" UCy" UB}"' } and {By" } such that C|"" UCy" U
BIY 40, By 40,

(4.24) /n L te(z)de < DSZ?/ and /n [tv(z)|dx < Dsfi‘l’/7
c,Vuc,"uBV By

2

where D > 0 is a constant.
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The second case is there are {C]"' U Cy" U B{''} and {By"} such that C}"" U
O UBM £ 0, B =0 and

/ jto(a)\de < Dsfo,,
oV ue, Y uBY

where D > 0 is a constant.
The third case is there are {C}" U C5" U B} and {B,"} such that C[" U
Cy" UBY =0, By" # 0 and

/B"z/ [tv(x)|dx < Dsn "

2

where D > 0 is a constant.

The fourth case is there are {C]" U Cy" U By} and {B,"} such that C}"' U
Cy" UBY =0 and By" = 0.

We only discuss the ﬁrst case and the remaining three cases can be handled in a
similar way. By ([@24),

| = [eB / 2] tv(a)| d — ca /C 2l to(a)]*da

< CBM/ [tv(z)|dx + caM/ [to(z)|dx < (B + a)MDsﬁOI,
o i

gy

= =k [, ol 0@ o] < ko, Mol < ok, MDS(S
and
0 =le@+ ) [ el l@)Pde - ca [ ol lto(o)]dal
B B/

< ¢(B+Ek) M/ |tv( )|dw+caM/ [to( )|da:<c(ﬁ—|—a—i—k)MDsn,7

where M = sup,cq|z|”. These three inequalities mean that
(425) (GRS Y| LY [+ 15| < e(20+ 28 + kny, + k)M D5,
By @.24),
G5 = ek = k) [ Talrtw(o) el < ek = b 1 [ Jto(o)lda,
BV Bl

ie.,

(4.26) (G5"| < clk =k, |MDs,

Then, by [@25), ({206) and Lemma AT2]
Go" < Go" + G = Ay, — Gy = Gy < | Ay, | +1Gy" [+ G5
< Dsy, +c(2a+28+ky, + k)MDs + clk — kn,, |MDS/30 < CsPo

mnyr?

where C, D > 0 are two constants, i.e.,

(4.27) tot, < O g

ny = G nyr
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where G =G+ +GY + G-

nys nys nyr

— (t+tp,) with

Gy, =calmt + (1= m)tn,)* " [ alal"lo(o)|"da,

0,
GO = Bt + (1= 1)tn, )P / (B + k2| lo() P dz,
ol
and
G, = cBlmt + (1= 1)t )P / Blef"|u(x) P da,
O,

71,m2 € [0,1]. On the other hand, in the verification of Lemma [L12] we have
(428) | [ el U ) @dal < 27 CAy ol o, o
Q

for 0 CQ,y>1form=12and 1<~y < %formz& as n is large, where
U™(7v) = |va]” —=|v[" and C > 0 is a constant. Since v,,, — v, [#28) means, Ve > 0,

| / (2 o, (@) [z — / 2" o) dz] < e
Q Q

for (, Q) = (q, Q;LL,), (8, Q%w)’ (s, QT’LL,), as nys is large. By this inequality, V¢ > 0,

(4.29) |G — G™M| < ¢,
as ny is large, where G™ = C_}';fl/ +G% + C_v';l, — (t +ty, ) with

nyr

Gy, = calmt + (1= m)tn,)" " [ alal fon, () "da,

ny

GY, = Bt + (1=t V'™ [ (B kel o, () P,

e
and
G, = cBmt + (1 - nz)tnu)ﬁ*l/ Bla|" v, (z)|  da.
Qn,
l

Since p(vy,) = tpvn, t, > 0, we have

2 — c/ afn(x)dx — c/ (B + kn)gn(x)dx — c Bgn(x)dx =0,
o Qo

n Qn
where f,,(z) = |2|"|tnv, (2)|* and g, () = |2|"|[t,vn(x)|?. Thus, for large ny,

ws) @ == 0, e P, = P, T

By (@29) and 30, if we set ¢ = %t, then, for large ny,
(4.31) av > %t.
By (@21) and ([@31), for large ny,
lt, — | t—tn, 3¢

Bo B Bo < (B_Q)t'

sn,/ S’ﬂl/

This is a contradiction to [@23]). Hence, the conclusion is true. O
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Lemma 4.15. Assume that L = {0}, f(x,t) is in @2), p is a peak selection of J
1) defined on Sy, p(w) = tyw, t, >0 forw € Sp1, p is continuous at v € Sp1
and {vp,} C Spv satisfies ||v, —v|| < 1, v, = v. Denote p(vy) = tpvn, tn, > 0,
p(v) =tv, t >0 and By = %—I— ap, ag € (0, %] A BM Cr, i =1,2,3, are defined
in Lemma LI0. If AFUAZUBS #0, t <t, and

(4.32) / |tnvn (x)|de < Ds2o

n

forn =1,2,..., where Q, = Ay U A} U BY, v, =

\/ﬁ—s%(v = sndy), [|dnll = 1,
(dn,v) =0, 8, >0 and D > 0 is a constant, then, there is a constant L, > 0 such
that

[t — 4 < Lo — v]®.
Proof. Suppose that there is not a constant L > 0 such that
[tn =t < Lplvn — v]|*.
Then, similar to Lemma [£14] there is {t,, } such that
tuy — 1]
Bo

Sny

(4.33) — +o00.

By Lemma [0 there are the following two cases. In these two cases, {n;}
represents a subsequence of {n;}.
The first case is there is {By" } such that By" # 0,

(4.34) / |tny, Vn,, () dz < Dl
ByY

where D > 0 is a constant.

The second case is there is {By" } such that By" = 0.

We only work on the first case and the second case can be discussed in a similar
way.

By (#.32)),

I =168 [l ey o @) dn = ca [ el o o, (@)l
AV AV

3

< CBM/ [tn, vn, ()|dz + caM/ [tn, vn, ()|dz < c(B + a)MDsg‘l),,
AV AV

ng

‘J;l/| = |Ck/n ’ ‘xlr‘t’ﬂl/v’ﬂl/ ($)|ﬂdx| S CkM/n ’ |tnl/vnl’ (:L‘)‘dx S CkMDSﬁO
B! B!
and

|J§lu| _ ‘C(B + knl/) /nl/ |!E|r|tnllvnl/(x)‘ﬁdx — CO(/HV ‘xlrltnllvnl/(iﬁ)‘adl"
A, Ay’

< B+ hu)M / o v, (2)|da + cal / v, (2)|d
A;Ll’ A;Ll’

< cB+a+ knl,)MDst‘;/,
where M = sup,cq|z|”. These three inequalities mean that

(4.35) |Hy V| < |7+ T30 [+ |37 | < (28 + 20 + kny, + k)M Dsl?,.
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By @.34),
|HV | = lc(kn, — k) /B"z/ \x|r\tnl,vnl,(x)|ﬁdx| < clkn, — k\M/Bnl/ tn, vn, (x)|dz,
2 2

i.e.,
ngs -
(4.36) |H3"| < clk = kn, [MDs(p,.

By ([#37), 36) and Lemma T3]
Hg" < Ho" + H{" = =By, — Hy"" = Hy"" < |By, |+ [Hy"| + [Hg" |
S DSnl/ + C(Qa + Qﬂ + knll + k)MDSTﬁL?/ + C|k - knll ‘Mﬁsg?/ S CYSEL?M

where C, D > 0 is a constant, i.e.,

C
(4.37) %V—tgfnﬂﬁ%

where H™ = Hf + H) + H,  — (t+ty,) with

nyr

H;‘l, = ca(mt+ (L —m)tn, )" / alz|"|vp,, (x)|adz,
o+

H’gl/ = 0/8(772t + (1 - 772)tnl/)5_1 /0(/8 + k)"/'[:‘r‘fvnl/ (CE)|'8d.'L',
Q
and
My = eBlmt+ (1= m)t, )~ [ flal o, (@) do.
n1,n2 € [0,1]. Similar to Lemma BT4 since vy, — v, by [@28)), we have, Ve > 0,
|| ol Tony 2)da = | ol o) del < e,
O O

where (7, Q) = (o, 27),(B,9°),(8,927), as ny is large. By this inequality, V¢ > 0,
(4.38) \H™ — H™ | <,
as ny is large, where H™' = I:I,J[l, + H’gl, + H’;ﬂ —(t+tn,).

i, :ca(nlt—i—(l—m)tnl,)a_l/ an 2o ()| da,
O+
1S, = cBmt + (1= me)tn, )" [ (84 Blalo(a) *do.
Q
and

Iy, = Bt + (L= m)ta, V'™ [ lalo(a) .

Since p(v) = tv, t > 0,

t? — c/ altv(z)|*dx — c/ (B + E)|tv(z)|Pdx — c/ Bltv(z)|Pdx = 0.
Qt Qo Q-

Then, for large ny,

) 5—2 B—2. B-2
4. H™ > —— - 24 — )t = ——1t.
(1.39) >3- 2@ P 2= 2
By ([@38) and [@39)), if we set ¢ = %t, then, for large n;/,

-2
(4.40) s B2

4
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By (@31) and ([{40), for large ny,

ltn, —t|  tn, —t _ 4C
sn s T (B-2)t
This is a contradiction to (£33]). Hence, the conclusion is correct. O

Lemma 4.16. Assume that L = {0}, f(x,t) is in (@2), p is a peak selection of J
1) defined on Sp1, p(w) = tyw, tw >0 forw € Spo, p is continuous at v € Sp1
and {v,} C Spi satisfies v, —v| < 1, v, = v. Denote p(vy) = tpvp, t, > 0,
p(v) =tv, t >0 and By = %—i— ag, ag € (0, %] A, B, CP, i =1,2,3, are defined
in Lemma IO If Ay U ALY UBY =0 forn = 1,2, ..., then, there is a constant
Ly > 0 such that

by — ] < Lallon — o],

Proof. By Lemma 212 denote v,, = \/1:-7(1) — 8pdy), ||dnll = 1, (dy,v) = 0 and

Sn > 0. Suppose that there is not a constant L > 0 such that

|t — t] < L llvn — vf|*.
Then, similar to Lemma [AT4], there is {t,, } such that

‘tnz — t|
Bo

Sny

Then, by Lemma ET0 and Lemma [TT] there are the following six cases. In
these six cases, {n;} represents a subsequence of {n;}.
The first case is there are {t,, } and {B"} such that t < t,,,, By" # 0 and

(4.41) — +00.

/B |tn,, Un,, (x)|da < Dl
2

where D > 0 is a constant.
The second case is there are {t,, } and {B;"} such that ¢ < t,, and By" = 0.
The third case is there are {C{" U C3" U B{"'}, {t,, } and {B;"} such that
C1"UCy" UBY #0,t > ty,, By" # 0 and

/n L te(z)|de < Dsg‘;/ and /n [tv(z)|dx < Dsfi‘l’/7
c,Vuc,uBv By

2

where D > 0 is a constant.
The fourth case is there are {C7" U Cy" U By}, {t,, } and {B3"} such that
C1"UCy" UBYY #0,t > t,,, ByY =0 and

/(/*"L’/ oM L™ [tv(z)|dx < DSQ(;/
U UB,

2

The fifth case is there are {C7" U Cy" U By}, {t,, } and {B3"} such that
Ci"UCy" UBY =0,t>ty,, By" #0 and

|, le@)ds < D

2

where D > 0 is a constant.
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The sixth case is there are {C{" U C3" U B{"'}, {tn, } and {B;"} such that
CY"UCy UBY =0,t>t,, and By = 0.

The first and second cases can be dealt with similarly to Lemma and the
third, fourth, fifth and sixth cases can be handled similarly to Lemma T4 O

By Lemma [LI0HLemma [£.16] we can proof the following theorem.

Theorem 4.17. Assume that L = {0}, f(x,t) is in £2), p is a peak selection
of J @) defined on Sp1, p(w) = tyw, ty, > 0 for w € Sy and p is continuous
at v € Spi. Denote p(v) = tv, t > 0. Then, there is a constant L, > 0 and a
neighborhood N'(v) of v on Sy such that, Yu € N (v),

Ip(u) = p(v)|| < Laflu —v]|*,
where By = % + ap, ap € (0, %]

Proof. Suppose that the conclusion is not true. Then, there exists {v,} C S
such that ||v, —v| <1, v, = v and

1o Ipen) = ()]

w50 o — ol

= +o00.

On the other hand,
ltn =t = [|(tn = )onll 2 [[(tn = t)vn + t(vn — V)| = [[t(vn — V)]
= |[tavn — o] = tlvn = vll = [Ip(vn) — p()[| = tllvn — o],
where p(v,) = t,v, and t,, > 0. Hence, we have

to —t
(4.42) lim —| |

n=voe o, — oo~

+o00.

It is obvious that there are two cases. The first is there is {A5' U A3' U By'}
such that A3' U A3' U B3' # () and the second is there is {A' U A3' U By'} such
that A3 U A5 U By = 0.

For the first case, by Lemma [£.I0] there are two subcases. The first one is there
is {A5" U A5 UByY} such that A3 UAL" UBy" # (0 and t > t,,, and the second
one is there is {45 U A3" U By" } such that A" UAZ" UBy" #0, ¢ <t,, and

/s tn, vn, (x)|dx < ng?/’

Ly

where €2, = A3V UAZY UB3Y, C >0 is a constant, U, = 1;2 (v = 8n, dn,, ),
ny
ldn, || = 1, (dn,,v) = 0 and s,, > 0, and {ny} is a subsequence of {n;}. By

Lemma 14 and Lemma B3] there is a constant L, > 0 such that
|tnll - t| < EhHUTLL/ - UHﬁO'

This is a contradiction to (E42]).
For the second case, by Lemma [£.I6] there is a constant L; > 0 such that

|tnz - t| < ‘Z’thﬂl - ”HBD'
This is also a contradiction to ([@42]). O

By Theorem [17] a conclusion on super-linear property of peak selection to J

@) with f(z,t) E2) can be verified.
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Theorem 4.18. Assume that L = {0}, f(z,t) is in [@2), p is a peak selection of
J @I) defined on Sp1, p(w) = tyw, ty, > 0 for w € Sy and p is continuous at
v € Spi. Then, p has super-linear property at v.

Proof. For every {v,} C Sr+ such that ||v, —v| <1, v,, = v, denote p(vy,) = tpvn,
t, > 0 and p(v) = tv, t > 0. By Theorem [LI7] there is a constant L, > 0 such
that, for large n,

(4. 43) Hp(vn) — ()|l < Ln v, — v,
Bo =3+ a0, ap € (0, £]. On the other hand,

1
/|Vw|2 x——/ |Vul’de = (Vu,Vw—Vu)-i—E/ |Vw — Vu|?dzx
Q

1
= —(Au,w—u)+ §||w —ul?

Then, by Remark 23] F(w;u,z) = |lw—u|/? is an upper-bound functional around
u for z € 9J(u).

Thus, by @43)),
Fp(w)ip(),2) _ . lp(vn) = p(0)]?

li = =0,
noee g =0l noe 2ug — 0]
i.e., p has super-linear property at v. O

Remark 4.19. To our numerical example, Lemma [ Lemma 43 Lemma
and Theorem T8 guarantee that the peak selection p(v) = tv, where ¢ > 0 and
J(tv) = max,>o J(sv), has super-linear property on Sy., where L = {0}.

Now, we start to discuss the details on numerical computation. To carry out the
minimax algorithm, we need to find 2* to construct a descent direction. Thus, we
have to solve the linear equation

_ k _rk
2(z)|zeon = 0,
where (¥ € 0G(p(vF)) and p is a peak selection to the variational functional .J
@I). By Theorem [[3 it is still hard to find ¢*¥ € OG(p(vF)) since the in-

n

clusion G(p(vF))(z) C [f(x, p(vF)(x), f(z, p(vF)(x))] offers little information on
OG(p(vF)). For nice f(x,t), Theorem [[F gives us an equality

0G(u) = {¢ : Q — R|(¢ is measurable, ((z)
€ [f(z,u(z) = 0), f(z,u(z) + 0)] Vo € Q}.
Indeed, we have the following simple lemma.

Lemma 4.20. If f(x,t) is a Baire-measurable function defined on Q x R, is non-
decreasing in t and satisfies

|f(z,t)| < C1+ Calt]?,

where 0 < o < z—fg form >3, 0 >0 form = 1,2 and C1,Cy > 0 are two
constants, then we have that, in H}(Q), for v € Sy, ¢ € 9G(p(v)) and (Ap(v) +
¢) L [L,v] is equivalent to ¢ is a solution to the convex optimization problem

n—1

(4.45) gélgﬁ( m=> ( /

(Dp(v) + musdz)? + ( / (Ap(v) + n)vdz)?,
i=1 /& Q
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where D = {n : Q& — R|n is measurable, n(z) € [f(x,p(v)(x) —0), f(z,p(v)(z) +
0)] Vz € Q} and p is a peak selection to the variational functional J @I)) w.r.t. a
finite dimensional subspace L C H} ().

Proof. 1f  satisfies ¢ € G (p(v)) and (Ap(v)+¢) L [L,v], then, by Theorem[LH ¢ €
D and L({) =0, i.e., ¢ is a solution to the convex optimization problem ([@45)). If ¢ is
a solution to the convex optimization problem (4.4H), then, ¢ € D, i.e., ¢ € 0G(p(v))
by Theorem On the other hand, Lemma says min,ep L£(n) = 0, i.e.,
(Ap(v) + ¢) L [L,v]. Hence, ¢ satisfies ¢ € IG(p(v)) and (Ap(v) +¢) L [L,v]. O

To L = {0}, we have a conclusion as follows.

Lemma 4.21. Assume that f(z,t) = g(x)h(t) is a Baire-measurable function de-
fined on Q xR, 0 < g(x) < C in Q for constant C, and h(t) is nondecreasing in t
and satisfies

|h(t)] < C1 + Caft]”,
fort € R, where 0 < 0 < z—fgformzi’», >0 form=1,2 and C;,Cy > 0 are

two constants. If h(t) is discontinuous at ty,...,ty and continuous elsewhere, then,
for v € H}(Q) with ||v|| = 1, there are d; € [h(t; — 0),h(t; +0)], i = 1,...,k, such
that ¢ € OG(p(v)) and (Ap(v) +¢) L v, where

()h(p(v)(x)), if p(v)(z t1y s b}y
(4.46) C(x)_{ s e St

p s a peak selection to the variational functional J @) and p(v) # 0.

Proof. Denote p(v) = k(v)v, k(v) € R. Without loss of generality, we assume
k(v) > 0. By Lemma [22] there is a z € 0G(p(v)) such that (Ap(v)+ z) L v. Thus,
by Theorem [L5]
g(@)h(p(v)(x)), if p(v)(2) & {t1, .., tk},
G (z) = +0), i pv)() =t >0,
0), ifp(v)(z) =t <0
and
g(@)h(p(v)(2)), if p(v)(x) ¢ {tr, . tx},
Go (2) = 0), ifp(v)(z) =1; 20,
0), if p(’l])(l’) =t < Oa

satisty ¢, (5 € 0J(p(v)),
[ @p0)+ G edo > [ (@p(0) + 2)odz =0
Q Q

and

/(Ap(v) + (o Jvdx < /(Ap(v) + z)vdx = 0.
Q

Q
Then, we can construct {¢;"} and {¢; } such that ¢}, ¢ € 9J(p(v)),

/(Ap(v) + ¢ vdr > 0 and /(Ap(v) + ¢ vde <0,
Q Q

where

{ G =G
Cz—i_:%( :1+Ci—t1)v
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if [o(Ap(v) + (¢, +¢y))vde > 0, or

{ G =3¢+ ¢,
Cj: z‘tlv

if fQ(Ap(v)—l—%(Qil—l—Qitl))vda: <0,i=1,2,.... During this process, if [,(Ap(v)+
¢Hvdz =0 or [(Ap(v) 4 ¢ )vde =0, then ¢ = (' or ¢ = ¢; . Otherwise,

¢(z) = lim Cj(:t) = lim (; (z)

i—00 i—00

is in ([4.46]) and satisfies ¢ € 0G(p(v)) and (Ap(v) +¢) L v. O

Remark 4.22. The proof gives us a simple iterative way to numerically capture a
¢ € OG(p(v)) such that (Ap(v) +¢) L v.

It is easy to check that v = 0 is a minimal point of J @I if f is in (£2]). Among
saddle points, people usually pay more attention to Mountain Pass type saddle
points. In this paper, we concentrate on computing them. Of course, more saddle
points can be captured if symmetry is used. Thus, in our numerical computation,
Lemma H21] is used for computing ¢¥ and then the Poisson equation ([@Z4) is
solved to get z¥ in the algorithm; even or odd symmetry about the origin is used
for capturing symmetric saddle points as 2 = (—1,1) and even or odd symmetry
about xi-axis, x9-axis or the diagonal lines x5 = —x1 is used to capture symmetric
saddle points as Q@ = (—1,1) x (=1,1), {(z1,22) € Rlz? + 23 < 1}. To solve
the Poisson equation ([€44]), the finite element method is employed. Over 5 x 10%
elements on  C R and 5 x 10° triangle elements on € C R? are used. The profiles
of approximations for saddle points are listed in Figures 1-10. The corresponding
values of J () are listed in captions. Symmetry of saddle point is also pointed
out in captions. Then min{||C|||¢ € dJ(u)} of every approximation u is less than
10~3. Hence, these approximations are good approximations of saddle points.

We set « =8, =6 and Q@ = (—1,1) in Figures 1 and 2, ¢ = 1 in Figure 1 and
¢ = 24.0625 in Figure 2. For the first and the second in Figures 1 and 2, r = 0
and in the third and the fourth, » = 4. Odd symmetry about the origin is used for
capturing the second and even symmetry about the origin is used for calculating
the fourth in these two figures. We set a = 8, § = 6 to Figures 3-10, ¢ = 1 to
Figures 3-6, ¢ = % to Figures 7 and 8 and ¢ = 60 to Figures 9 and 10. For Figures
3,5, 7 and 8, r = 0 and to Figures 4, 6, 9, and 10, r = 4. For the domain,
Q= (-1,1) x (—1,1) to Figures 3, 4, 7, and 9 and Q = {(z1,22) € R|z? + 23 < 1}
to Figures 5, 6, 8, and 10. For capturing the third in Figures 3, 6, 7, and 10 and
the second in Figures 5, 8, odd symmetry for xs-axis is used and for computing
the second in Figures 4, 6, 9, and 10, even symmetry for zo-axis is used. For
computing the second in Figures 3 and 7 and the third in Figures 4 and 9, odd
and even symmetry for the line o = —z; are used respectively. Odd symmetry
for x;-axis and xs-axis are used for the fourth in Figures 3 and 7 and the third in
Figures 5 and 8 and even symmetry for z;-axis and zs-axis are used for the fourth
in Figures 4, 6, 9, and 10. v} = ﬁ was used as initial point for calculating the
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first in Figure 7, where

v(z) =

2(xa+1), =z €
(.’L‘l +1 , X1 € s
2(1 —xy1), = €][3,1

L, (‘T17$2) € [_%7 %} X [_%7 %]

It is easy to check that

//Q

where Q = (-1

,1). Denote ¢( ) = J(tv}) for J @I). Then, we have

8¢( ) = {(z,v1)|z € 0 (tv1) }.

For the first in Figure 7, by (@A),
t) = {—// (Au + ¢)vidzr|¢ is measurable, ((z) € fT(z,u(z)) Vo € Q},
Q

where
{80|u(w)|iu
£ (@, u(@)) = [f (@, u(x) ~0), f(z, u(z) +0)] = [{gcc}gc(f)l '

[—8¢, —6¢],

u=tv} and c = %. The equality,

means 0 € 9¢(||v|]).
do

dt

//Q|Vv|2dx—c(6//gv6dz+g):

and as t is 1arger than ||v|| and very close to ||v||,

¢
dt

<

<

//|Vtv1 )|?dx — (6 //Q (tvg) dx—i—S//Q (tv])%dz))
g(//Q|V(tv1)\2dx—c(6//ﬂ(tv1) dx—|—2//ﬂl(tv1) dzx))
%(//Q|Vv|2da:—c(6//Qvﬁdx—kg)):(),

) [_17_%]7‘7’.1 +.’L’2 SO,.’L’l—.’L'Q 207
2(1 —x2), @2 € [5,1],m1 4+ 22> 0,31 — 32 <0,

) [-1,— 1] 1+ 22 < 0,21 — 22 <0,

) [% ] 1+29 20,21 —29 >0,

= — and / |Vo(z)Pdz = 12,

As t is less than ||v]| and very close to ||v||,

- %(//Q|V(tv})|2dx—60//Q(tv%)ﬁdx)
> 1(//|V1}|2dx—c(6//116clgr;+§)):

2131

if Ju(x)] > 1,
if Ju(x)] < 1,

if u(z) = -1,

where Qo = {x € Q|tvi(z) < 1} and Q1 = {z € Q|tvi(z) > 1}. Thus, p(vi) = v.
The point p(v{) is a nonsmooth point of J.
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15 )

s 0 05 1 1 =05 0 05 1 =5 0 05 1 =05 0 05

FIGURE 1. ¢=1, r=0 for (a) and (b), r=4 for (c¢) and (d). (a)
J=0.6342, positive saddle point, (b) J=4.4818, saddle point odd
symmetric about the origin, (¢) J=2.9981, positive saddle point,
(d) J=3.9094, saddle point even symmetric about the origin.

0.45 0.6
04 0.4
0.35
0.2
0.3
0.25 0
0.2 0.2
5
0.15 o4
0.1
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0 -0.8
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(a) (b)
1 1
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0.6 06
05
0.4 04
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0.2 02
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0 0
-1 -0.5 0 0.5 1 ~1-08-06-04-02 0 02 04 06 08 1
(c) (d)

FIGURE 2. ¢ = 24.0625, r = 0 for (a) and (b), » = 4 for (c) and
(d). (a) J = 0.1296, positive saddle point, (b) J = 1.0331, saddle
point odd symmetric about the origin, (c¢) J = 0.9372, positive
saddle point, (d) J = 1.2156, saddle point odd symmetric about
the origin.
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saddle point,

= 1.5746, positive

J

)

a

(

=1,r=0.
4.3662, saddle point odd symmetric for zo = —x1, (c) J

FIGURE 3. ¢

(b) J
4.5596, saddle point odd symmetric for z;

0 (d) J = 10.1556,

=0.

0 and x5

saddle point odd symmetric for x;

M

positive saddle point

a) J = 3.0167,

(

saddle point even symmetric for zq

= 4.

T

b

FIGURE 4. ¢ =1

(

) J =

J
9.2199

C

=0, (
—, (d) J =
0.

J = 5.8567,
saddle point odd symmetric for zo

)

b
5.9545,

0 and zo9 =

saddle point even symmetric for x;

)

positive saddle point

)

(a) J = 1.6614

= 0.
4.7202, saddle point odd symmetric for z;

T

)

FIGURE 5. ¢ =1

(

0, (c) J =

b) J

=0.

0 and x-

11.2632, saddle point odd symmetric for z;
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o

O D o o

FIGURE 6. ¢ = 1, r = 4. (a) J = 4.2512, positive saddle point,
(b) J = 8.1264, saddle point even symmetric for z; = 0, (¢) J =
8.8090, saddle point odd symmetric for 3 = 0, (d) J = 10.1558,
saddle point even symmetric for 1 = 0 and x5 = 0.

FIGURE 7. ¢ = %, r=0. (a) J = 1.4439, positive saddle point,

(b) J = 4.0388, saddle point odd symmetric for zo = —z1, (c)
J =4.1995, saddle point odd symmetric for 1 = 0 (d) J = 9.3593,
saddle point odd symmetric for ;1 = 0 and 29 = 0.

FIGURE 8. ¢ = %, r =0. (a) J = 1.5250, positive saddle point,
(b) J = 4.3483, saddle point odd symmetric for 1 = 0 (¢) J =

10.3838, saddle point odd symmetric for 1 = 0 and x5 = 0.



A MINIMAX METHOD FOR FINDING NONSMOOTH SADDLE POINTS 2135

FIGURE 9. ¢ = 60, r = 4. (a) J = 0.6098, positive saddle point,
(b) J = 1.1663, saddle point even symmetric for 1 = 0 (¢) J =
1.1958, saddle point even symmetric for x5 = —x1, (d) J = 1.8055,
saddle point even symmetric for 1 = 0 and x5 = 0.

FIGURE 10. ¢ =60, r = 4. (a) J = 1.0044, positive saddle point,
(b) J = 1.8906, saddle point even symmetric for ;1 = 0 (¢) J =
2.1015, saddle point odd symmetric for 1 = 0 (d) J = 2.2920,
saddle point even symmetric for 1 = 0 and x5 = 0.
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