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A MINIMAX METHOD FOR FINDING SADDLE CRITICAL

POINTS OF UPPER SEMI-DIFFERENTIABLE LOCALLY

LIPSCHITZ CONTINUOUS FUNCTIONAL IN

HILBERT SPACE AND ITS CONVERGENCE

XUDONG YAO

Abstract. A minimax characterization for finding nonsmooth saddle critical
points, i.e., saddle critical points of locally Lipschitz continuous functional,
in Banach space is presented in [X. Yao and J. Zhou, A local minimax char-
acterization for computing multiple nonsmooth saddle critical points, Math.
Program., 104 (2005), no. 2-3, Ser. B, 749-760]. By this characterization, a
descent-max method is devised. But, there is no numerical experiment and
convergence result for the method. In this paper, to a class of locally Lipschitz
continuous functionals, a minimax method for computing nonsmooth saddle
critical points in Hilbert space will be designed. Numerical experiments will
be carried out and convergence results will be established.

1. Introduction

Let B be a Banach space, B∗ its dual space, 〈, 〉 the dual relation, and ‖ · ‖ its
norm. To a locally Lipschitz continuous functional J : B → R, the generalized
gradient ∂J(u) at u ∈ B in the sense of Clarke [7] is defined as follows.

Definition 1.1. Let J be Lipschitz continuous near u0 ∈ B. The generalized
directional derivative J0(u0, v) of J at u0 in the direction of v ∈ B is defined by

J0(u0, v) = lim sup
u → u0

t ↓ 0

J(u+ tv)− J(u)

t
.

The generalized gradient ∂J(u0) of J at u0 is a subset of B∗ given by

∂J(u0) = {ζ ∈ B∗|〈ζ, v〉 ≤ J0(u0, v), ∀v ∈ B}.
To convex functionals, we have the following definition for the subgradient.

Definition 1.2. Let J : B → R be convex. The subgradient ∂J(u0) of J at u0 is
a subset of B∗ given by

∂J(u0) = {ζ ∈ B∗|〈ζ, u− u0〉 ≤ J(u)− J(u0), ∀u ∈ B}.
For convex functionals, the generalized gradient coincides with the subgradient.
According to Chang [5], a point u0 ∈ B is a critical point of a locally Lipschitz

continuous functional J if and only if

0 ∈ ∂J(u0).
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If J is a C1 functional, ∂J(u0) = {∇J(u0)}, i.e., 0 ∈ ∂J(u0) becomes ∇J(u0) = 0,
the well-known Euler-Lagrange equation. Critical points of a C1 functional are
called smooth critical points and critical points of a locally Lipschitz continuous
functional are called nonsmooth critical points.

The classical optimization theory, nonsmooth analysis and calculus of variation
study local maxima or minima. Traditional numerical methods in these areas are
for finding local extremum points. Local extremum points are critical points. A
critical point u0 of J , that is not a local extremum point, is a saddle point, i.e., u0

is a critical point and in any neighborhood N (u0) of u0, there are v, w ∈ N (u0)
such that

J(v) < J(u0) < J(w).

In physical systems, saddle points appear as unstable equilibria or transient excited
states.

The minimax principle, which characterizes a saddle point of J as a solution to

minA∈Amaxv∈AJ(v)

for some collection A of subsets A in B, is one of the most popular approaches in
critical point theory. For smooth critical points, the Mountain Pass Lemma estab-
lished in 1973 by Ambrosetti and Rabinowitz [2] set a milestone in contemporary
critical point theory. Then, various saddle point theorems and linking theorems
were established in the literature to prove existence of multiple critical points for
various nonlinear problems; see [3], [12]. For nonsmooth critical points, in 1981,
Chang [5] introduced the notion of nonsmooth critical points and obtained a non-
smooth version of the saddle point theorem of Rabinowitz. Kourogenis and Papa-
georgiou [9] generalized Chang’s results and Kandilakis, Kourogenis and Papageor-
giou [8] obtained a nonsmooth version of the Linking Theorem. All these saddle
point theorems and linking theorems in the literature focus on the existence issue
and they are not helpful to devise numerical algorithms for finding saddle critical
points. For computing smooth saddle critical points, Li and Zhou [10] established
a local minimax characterization of smooth saddle critical points in Hilbert space
and designed a minimax algorithm based on the characterization. Then, Yao and
Zhou [14] extended the local minimax characterization and the minimax algorithm
in Hilbert space to a local minimax characterization and a minimax algorithm in
Banach space. These two algorithms were successfully carried out to find smooth
saddle critical points and convergence results were established; see [10], [11], [14],
[15]. In 2005, Yao and Zhou [13] gave a local minimax characterization for non-
smooth saddle critical points and devised a descent-max method by the charac-
terization. But, there is no numerical experiment and convergence result for the
method. In this paper, to a class of locally Lipschitz continuous functionals, the
local minimax characterization for nonsmooth saddle critical points in [13] will be
reestablished in Hilbert space in another way. Then, a minimax method for finding
nonsmooth saddle critical points will be designed. Numerical experiments will be
carried out and convergence results will be obtained.

A typical example on application of nonsmooth critical point theory to partial
differential equations is the Dirichlet problem,

(1.1)

{
−Δu(x) = f(x, u(x)), x ∈ Ω,
u(x)|x∈∂Ω = 0,
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where Ω is an open bounded domain in R
n with smooth boundary ∂Ω, f(x, t) is

a measurable function defined on Ω × R and for every x ∈ Ω, f(x, t) is locally
bounded. The corresponding variational functional is

J(u) =
1

2

∫
Ω

|∇u(x)|2dx−
∫
Ω

F (x, u(x))dx,

where F (x, t) =
∫ t

0
f(x, s)ds. Denote G(u) =

∫
Ω
F (x, u(x))dx. Then, according to

Chang [5], we have the following theorems for the problem (1.1).

Theorem 1.3. If f(x, t) satisfies

|f(x, t)| ≤ C1 + C2|t|σ

for x ∈ Ω ⊂ R
n and t ∈ R, where 0 < σ < n+2

n−2 for n ≥ 3, σ > 0 for n = 1, 2 and

C1, C2 > 0 are two constants, then, G(u) =
∫
Ω

∫ u(x)

0
f(x, s)dsdx is locally Lipschitz

continuous in Lσ+1(Ω) and H1
0 (Ω) as well. In addition, if f̄(x, t) and f̂(x, t) are

N-measurable (cf. [4]), where

f̄(x, t) = lim
δ→0

ess inf |s−t|<δf(x, s)

and
f̂(x, t) = lim

δ→0
ess sup|s−t|<δf(x, s),

then
{ζ(x)|ζ ∈ ∂G(u)} ⊆ [f̄(x, u(x)), f̂(x, u(x))] a.e.

in Lσ+1(Ω) and H1
0 (Ω) as well.

Remark 1.4. It is just for simplicity to assume σ > 0 for n = 1, 2 in Theorem 1.3,
Theorem 1.5, Lemma 3.6, and for m = 1, 2 in Lemma 4.20, Lemma 4.21.

Theoretically, for the Dirichlet problem (1.1), people will find u0 ∈ H1
0 (Ω) such

that

(1.2) −Δu0(x) ∈ [f̄(x, u0(x)), f̂(x, u0(x))]

for all x ∈ Ω [5]. By the inclusion {ζ(x)|ζ ∈ ∂G(u)} ⊆ [f̄(x, u(x)), f̂(x, u(x))]
in Theorem 1.3, to find such u0, we can find a critical point of J . But, from a
numerical point of view, this inclusion offers little information on ∂G(u) and it is
not helpful for computing critical points of J . Also in [5], Chang sharpened the
conclusion.

Theorem 1.5. If f(x, t) is a Baire-measurable function defined on Ω×R, is non-
decreasing in t, and satisfies

|f(x, t)| ≤ C1 + C2|t|σ

for x ∈ Ω ∈ R
n and t ∈ R, where 0 < σ < n+2

n−2 for n ≥ 3, σ > 0 for n = 1, 2 and

C1, C2 > 0 are two constants, then the functional G(u) =
∫
Ω

∫ u(x)

0
f(x, s)dsdx is

convex and

∂G(u)={ζ : Ω → R|ζ is measurable, ζ(x)∈ [f(x, u(x)− 0), f(x, u(x) + 0)] ∀x∈Ω}
in Lσ+1(Ω) and H1

0 (Ω) as well.

Remark 1.6. The conclusions in this theorem and in Theorem 2.3 in [5] look dif-
ferent. If we read the proof of Theorem 2.3 in [5] carefully, it will be found that
indeed Chang verified the conclusion in this theorem.
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The equality

∂G(u) = {ζ : Ω → R|ζ is measurable, ζ(x) ∈ [f(x, u(x)−0), f(x, u(x)+0)] ∀x ∈ Ω}
is much better than the inclusion

{ζ(x)|ζ ∈ ∂G(u)(x)} ⊆ [f̄(x, u(x)), f̂(x, u(x))].

It says that finding u0 ∈ H1
0 (Ω) which satisfies (1.2) is equivalent to finding a critical

point of J . On the other hand, this equality offers clear information on ∂G(u) and
it is helpful for calculating critical points of J . In Theorem 1.5,

J(u) = I(u)−G(u),

where I(u) = 1
2

∫
Ω
|∇u(x)|2dx ∈ C1(H1

0 (Ω),R) and G(u) =
∫
Ω

∫ u(x)

0
f(x, s)dsdx is

convex on H1
0 (Ω). In this paper, upper semi-differentiable locally Lipschitz con-

tinuous functional will be defined in Banach space B first in Section 2. A locally
Lipschitz continuous functional

J(u) = I(u)−G(u), ∀u ∈ B,

where I ∈ C1(B,R) and G : B → R is convex, is an upper semi-differentiable locally
Lipschitz continuous functional on B. Then, to upper semi-differentiable locally
Lipschitz continuous functionals, the local minimax characterization for nonsmooth
saddle critical points in [13] will be reestablished in Hilbert space H and, according
to this local minimax characterization, a minimax algorithm for capturing saddle
critical points of upper semi-differentiable locally Lipschitz continuous functionals
will be presented. In Section 3, the SC-condition will be defined first. Based
on the SC-condition, the subsequence and sequence convergence for the minimax
algorithm will be established. This is the first time that convergence results are
obtained for a minimax algorithm to capture nonsmooth saddle points. In Section
4, this minimax algorithm will be implemented to solve numerical examples.

At the end of this section, let us recall some simple properties of the general-
ized directional derivative J0(u, v) and the generalized gradient ∂J(u) to locally
Lipschitz continuous functional J .

Proposition 1.7 ([7]). Assume that J,W are locally Lipschitz continuous in B.
(a) For every u ∈ B, ∂J(u) is a nonempty, convex and w∗-compact subset of

B∗.
(b) If |J(w) − J(v)| ≤ K‖w − v‖ for all w, v in a neighborhood of u ∈ B, then

∂J(u) is a bounded set in B∗ with bound K.
(c) ∂(J +W )(u) ⊆ ∂J(u) + ∂W (u) for every u ∈ B and for λ ∈ R, ∂(λJ)(u) =

λ∂J(u) for every u ∈ B.
(d) If u ∈ B is a local minimum or maximum point of J , then 0 ∈ ∂J(u).
(e) (Chain Rule) Let X be a Banach space. If L : X → B is strictly differential

at v, i.e., there is a DsL(v) ∈ L(X,B) such that for each w ∈ X,

lim
v′ → v
t ↓ 0

L(v′ + tw)− L(v′)

t
= 〈DsL(v), w〉

and the convergence is uniform for w in compact sets, then F = J ◦ L has

∂F (v) ⊂ ∂J(L(v)) ◦DsL(v).

Equality holds if L maps every neighborhood of v to a set which is dense in a
neighborhood of L(v).
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(f) J0(u, v) : B ×B → R is upper semicontinuous.

2. A minimax method in Hilbert space

Let H be a Hilbert space, 〈, 〉 the inner product, ‖ · ‖ the norm introduced by
the inner product 〈, 〉 and L a closed subspace of H. Denote [L, v] as the subspace
spanned by L and v ∈ H and [u1, u2, ..., um] as the subspace spanned by ui ∈ H,
i = 1, 2, ...,m. For any subspace H ′ of H, SH′ is the unit sphere in H ′ and for
any closed subspace M of H, H = M ⊕M⊥ is the orthogonal decomposition of H
and M⊥ is the orthogonal complement of M in H. For any v ∈ H and U ⊂ H,
d(v, U) = infu∈U ‖v − u‖, i.e., the distance between v and U .

To design a minimax algorithm, the following peak selection is important.

Definition 2.1. A set-valued mapping P : SL⊥ → 2H is the peak mapping of a
locally Lipschitz continuous functional J : H → R w.r.t. L if ∀v ∈ SL⊥ , P (v) =
{u ∈ [L, v] : u is a local maximum point of J in[L, v]}. A single-valued mapping
p : SL⊥ → H is a peak selection of the locally Lipschitz continuous functional J
w.r.t. L if p(v) ∈ P (v), ∀v ∈ SL⊥ . For a given v ∈ SL⊥ , if p is locally defined in a
neighborhood of v, we say that J has a local peak selection p at v.

The peak selections have the following property.

Lemma 2.2. Assume that L ⊂ H is a finite dimensional space, v ∈ SL⊥ and p is
a local peak selection of a locally Lipschitz continuous functional J w.r.t. L at v.
Then, there is z ∈ ∂J(p(v)) such that z ⊥ [L, v].

Proof. Since L is a finite dimension space, assume that u1, u2, ..., um is a basis.
Consider the composite functional

F (t0, t1, ..., tm) = J(t0v + t1u1 + · · ·+ tmum).

According to (e) in Proposition 1.7, we have

∂F (t0, t1, ..., tm) = {(〈ζ, v〉, 〈ζ, u1〉, ..., 〈ζ, um〉)|ζ ∈ ∂J(t0v + t1u1 + · · ·+ tmum)}.

Since p is a peak selection, by (d) in Proposition 1.7, 0 ∈ ∂F (tv0, t
v
1, ..., t

v
m), where

p(v) = tv0v + tv1u1 + · · ·+ tvmum, i.e., there is z ∈ ∂J(p(v)) such that

〈z, v〉 = 0 and 〈z, ui〉 = 0, i = 1, ...,m,

i.e., z ⊥ [L, v]. �

Remark 2.3. This conclusion is simple and important. To upper semi-differentiable
locally Lipschitz continuous functionals which will be defined later, it will be used
to reestablish the local minimax characterization for nonsmooth saddle critical
points in [13] in Hilbert space. On the other hand, if J ∈ C1(H,R), ∂J(p(v)) =
{∇J(p(v))} and ∇J(p(v)) ⊥ [L, v] are obviously true.

We give two simple lemmas which will be used later.

Lemma 2.4. In Banach space B, for any point v with ‖v‖ = 1, it holds that

‖v − v + w

‖v + w‖‖ ≤ 2‖w‖
‖v + w‖ , ∀w ∈ B.
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Proof. Since ‖v‖ = 1, we have

‖v − v + w

‖v + w‖‖ = ‖ (‖v + w‖ − 1)v + w

‖v + w‖ ‖ ≤ |‖v + w‖ − 1|‖v‖+ ‖w‖
‖v + w‖

=
|‖v + w‖ − ‖v‖|+ ‖w‖

‖v + w‖ ≤ 2‖w‖
‖v + w‖ .

�
Lemma 2.5. For

J(u) = I(u)−G(u), ∀u ∈ B,

where I ∈ C1(B,R) and G : B → R is locally Lipschitz continuous on Banach space
B,

∂J(u) = {∇I(u)− g|g ∈ ∂G(u)},
where ∇I is the gradient of I.

Proof. By (c) in Proposition 1.7,

∂J(u) ⊆ ∂I(u) + ∂(−G)(u) = {∇I(u)} − ∂G(u),

i.e.,
∂J(u) ⊆ {∇I(u)− g|g ∈ ∂G(u)}.

On the other hand, by (c) in Proposition 1.7 again,

∂G(u) ⊆ ∂I(u) + ∂(−J)(u) = {∇I(u)} − ∂J(u).

This means that ∇I(u)− g0 ∈ ∂J(u) for every g0 ∈ ∂G(u). Then,

{∇I(u)− g0|g0 ∈ ∂G(u)} ⊆ ∂J(u).

Hence,
∂J(u) = {∇I(u)− g|g ∈ ∂G(u)}. �

In this section, we will establish a minimax characterization for upper semi-
differentiable locally Lipschitz continuous functionals. First, we define upper and
lower semi-differentiable locally Lipschitz continuous functionals.

Definition 2.6. In Banach space B, a locally Lipschitz continuous functional J
is an upper semi-differentiable locally Lipschitz continuous functional if, for every
u ∈ B, z ∈ ∂J(u) implies, for w around u,

J(w)− J(u) ≤ 〈z, w − u〉+ F (w;u, z),

where F (w;u, z) = o(‖w−u‖) is an upper-bound functional around u and a locally
Lipschitz continuous functional I is a lower semi-differentiable locally Lipschitz
continuous functional if, for every u ∈ B, z ∈ ∂I(u) implies, for w around u,

I(w)− I(u) ≥ 〈z, w − u〉+G(w;u, z),

where G(w;u, z) = o(‖w − u‖) is a lower-bound functional around u and 〈, 〉 is the
dual relation between B and its dual space B∗.

Remark 2.7. (a) If J : B → R is Fréchet differentiable, then, to every u ∈ B,
z ∈ ∂J(u) = {∇J(u)} implies

J(w)− J(u) = 〈z, w − u〉+ o(‖w − u‖)
for w around u, i.e.,

(2.1) J(w)− J(u) ≤ 〈z, w − u〉+ o(‖w − u‖)
for w around u, and

(2.2) J(w)− J(u) ≥ 〈z, w − u〉+ o(‖w − u‖)
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for w around u. To a locally Lipschitz continuous functional J : B → R, if, for
every u ∈ B, z ∈ ∂J(u) implies both (2.1) and (2.2), then J is Fréchet differentiable.
Hence, a locally Lipschitz continuous functional J : B → R can be considered as
a semi-differentiable locally Lipschitz continuous functional if, for every u ∈ B,
z ∈ ∂J(u) implies (2.1) or for every u ∈ B, z ∈ ∂J(u) implies (2.2).

(b) If J ∈ C1(B,R), J is an upper semi-differentiable locally Lipschitz con-
tinuous functional and also a lower semi-differentiable locally Lipschitz continuous
functional.

The following lemma gives us an important class of upper semi-differentiable
locally Lipschitz continuous functionals.

Lemma 2.8. A locally Lipschitz continuous functional

J(u) = I(u)−G(u), ∀u ∈ B,

where I ∈ C1(B,R) and G : B → R is convex on Banach space B, is an upper
semi-differentiable locally Lipschitz continuous functional on B.

Proof. Since I ∈ C1(B,R), to every u ∈ B,

I(w)− I(u) = 〈∇I(u), w − u〉+ o(‖w − u‖)
for w around u and since G is convex in B, to every u ∈ B and g ∈ ∂G(u),

G(w)−G(u) ≥ 〈g, w − u〉
for w ∈ B. By Lemma 2.5, for z ∈ ∂J(u), there is g0 ∈ ∂G(u) such that z =
∇I(u)− g0. Thus,

J(w)− J(u) = (I(w)− I(u))− (G(w)−G(u))

≤ 〈∇I(u)− g0, w − u〉+ o(‖w − u‖) = 〈z, w − u〉+ o(‖w − u‖)
for w around u, i.e., J is a upper semi-differentiable locally Lipschitz continuous
functional on B. �

Remark 2.9. According to the verification of the lemma, it is clear that

F (w;u, z) = I(w)− I(u)− 〈∇I(u), w − u〉 = o(‖w − u‖)
is an upper-bound functional of J around u.

To simplify the statement of mathematical justification and convergence results
for our minimax algorithm, we need the definition for super-linear property of peak
selection.

Definition 2.10. Let J be an upper semi-differentiable locally Lipschitz continuous
functional on Hilbert space H and H = L ⊕ L⊥ for a finite dimensional subspace
L ⊂ H. If p is a local peak selection of J w.r.t. L at v ∈ SL⊥ such that p is
continuous at v and, for every z ∈ ∂J(p(v)) ∩ [L, v]⊥, there is an upper-bound
functional F (u; p(v), z) of J around p(v) satisfying

lim
w→v

|F (p(w); p(v), z)|
‖w − v‖ = 0,

we say that the peak selection p has super-linear property at v. If p is a peak
selection of J w.r.t. L defined on an open set V ⊂ H and p has super-linear
property at every v ∈ V , we say that the peak selection p has super-linear property
in V .
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Remark 2.11. (a) Theoretically, we can give a general definition by using “for a z ∈
∂J(p(v))∩ [L, v]⊥” instead of “for every z ∈ ∂J(p(v)) ∩ [L, v]⊥”. If we choose that
special z in the general definition as z in Lemma 2.14, then, we still have Lemma
2.14 and Theorem 2.16. We can still use Lemma 2.14 as step-size rule to design a
minimax algorithm. But, numerically, we prefer “for every z ∈ ∂J(p(v)) ∩ [L, v]⊥”
since it is hard to find that special z in numerical computation. On the other hand,
for establishing convergence results, i.e., Theorem 3.9, Theorem 3.12 and Corollary
3.14, we also prefer “for every z ∈ ∂J(p(v)) ∩ [L, v]⊥”.

(b) Since F (p(w); p(v), z) = o(‖p(w) − p(v)‖), the Lipschitz continuity of p
around v, i.e.,

‖p(w)− p(v)‖ ≤ l‖w − v‖
for w around v, where l > 0 is a constant, means that the peak selection p has
super-linear property at v. Indeed, usually the Hölder continuity of p around v,
i.e.,

‖p(w)− p(v)‖ ≤ l‖w − v‖α

for w around v, where l > 0 is a constant and 0 < α ≤ 1 is close to 1, will guarantee
that the peak selection p has super-linear property at v.

For J ∈ C1(H,R), we will prove that continuity of peak selection p of J w.r.t.
a finite dimensional subspace L ⊂ H at v ∈ SL⊥ implies super-linear property of p
at v. First, we verify a simple and useful lemma.

Lemma 2.12. Assume that H is a Hilbert space and v ∈ H such that ‖v‖ = 1.
Denote M = {tv|t ∈ R}. Then, for every u ∈ H with ‖u‖ = 1 and 〈u, v〉 > 0, there
is unique d ∈ M⊥ with ‖d‖ = 1 and s ≥ 0 such that

u =
1√

1 + s2
(v − sd).

Proof. Since H is a Hilbert space, there is w ∈ M⊥ with ‖w‖ = 1 such that

(2.3) u = c1v + c2w.

Then, by ‖u‖ = ‖v‖ = ‖w‖ = 1 and w ∈ M⊥, we know

(2.4) c21 + c22 = 1.

On the other hand, 〈u, v〉 > 0, ‖v‖ = 1 and w ∈ M⊥ mean c1 = 〈u,v〉
‖v‖2 = 〈u, v〉 > 0.

Thus, there is s ≥ 0 such that c1 = 1√
1+s2

. If we set

d =

{
w, if c2 ≤ 0,
−w, if c2 > 0,

then, by (2.3) and (2.4),

u =
1√

1 + s2
(v − sd).

Since c2w is unique and c2 = 〈u,w〉, d is unique. �

By Lemma 2.12, we establish a relation between continuity and super-linear
property of peak selection of J ∈ C1(H,R) as follows.

Lemma 2.13. Assume that H is a Hilbert space, J ∈ C1(H,R), H = L⊕ L⊥ for
a finite dimensional subspace L ⊂ H and p is a local peak selection of J w.r.t. L
at v ∈ SL⊥ . If p is continuous at v, then p has super-linear property at v.
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Proof. In Hilbert space L⊥, if w ∈ SL⊥ and ‖w − v‖ < 1, then

1 > ‖w − v‖2 = ‖w‖2 + ‖v‖2 − 2〈w, v〉 = 2− 2〈w, v〉, i.e., 〈w, v〉 > 1

2
.

Thus, by Lemma 2.12, for every w ∈ SL⊥ with ‖w − v‖ < 1, there is s ≥ 0 and
d ∈ [L, v]⊥ such that ‖d‖ = 1 and

w =
1√

1 + s2
(v + sd).

Hence, for small s > 0,

J(p(w))− J(p(v)) = J(p(
v + sd

‖v + sd‖ ))− J(p(v))

≤ J(p(
v + sd

‖v + sd‖ ))− J(
tw

‖v + sd‖v + wL) =
tws

‖v + sd‖〈∇J(η), d〉

=
tws

‖v + sd‖ (〈∇J(p(v)), d〉+ 〈∇J(η)−∇J(p(v)), d〉)

= 〈∇J(p(v)), p(w)− p(v)〉+ tws

‖v + sd‖〈∇J(η)−∇J(p(v)), d〉,

where p(w) = tw
v+sd

‖v+sd‖ + wL, wL ∈ L, η = λp(w) + (1 − λ)( tw
‖v+sd‖v + wL) and

λ ∈ [0, 1], i.e.,

(2.5) |F (p(w); p(v),∇J(p(v)))| ≤ |tw|s
‖v + sd‖ |〈∇J(η)−∇J(p(v)), d〉|,

where

F (u; p(v),∇J(p(v)))

=

{
D(u; p(v),∇J(p(v))), if D(u; p(v),∇J(p(v))) > 0,
0, if D(u; p(v),∇J(p(v))) ≤ 0

is an upper-bound functional of J around p(v) and

D(u; p(v),∇J(p(v))) = J(u)− J(p(v))− 〈∇J(p(v)), u− p(v)〉.
On the other hand,

‖w − v‖ = ‖ 1√
1 + s2

(v + sd)− v‖ = ‖( 1√
1 + s2

− 1)v +
s√

1 + s2
d‖

=
1√

1 + s2
‖(1−

√
1 + s2)v + sd‖ =

s√
1 + s2

‖ s

1 +
√
1 + s2

v − d‖

=
s√

1 + s2

√
1 +

s2

(1 +
√
1 + s2)2

,

i.e.,

(2.6) lim
w−v

‖w − v‖
s

= 1.

Hence, by (2.5) and (2.6),

lim
w→v

|F (p(w); p(v),∇J(p(v)))|
‖w − v‖ = 0,

i.e., p has super-linear property at v. �
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By peak selection, the following lemma can be verified. The conclusion will be
used as a step-size rule for our minimax algorithm.

Lemma 2.14. Let H be a Hilbert space with H = L⊕L⊥ for a finite dimensional
subspace L ⊂ H. Assume that J is a upper semi-differentiable locally Lipschitz
continuous functional and p is a local peak selection of J w.r.t. L at v ∈ SL⊥ such
that p(v) is not a critical point, p has super-linear property at v and d(p(v), L) > 0.
Choose z ∈ ∂J(p(v)) ∩ [L, v]⊥. Denote p(v) = tvv + wv, where wv ∈ L and w =
−sign(tv)

z
‖z‖ . Then, as s > 0 is small,

J(p(v(s)))− J(p(v)) < −1

4
s|tv|‖z‖,

where v(s) =
v + sw

‖v + sw‖ =
1√

1 + s2
(v + sw).

Proof. Since J is a upper semi-differentiable locally Lipschitz continuous functional
and p is continuous at v, we have

J(p(v(s)))− J(p(v)) ≤ 〈z, p(v(s))− p(v)〉+ F (p(v(s)); p(v), z)

for small s > 0, where F (p(v(s)); p(v), z) = o(‖p(v(s))− p(v)‖) is any upper-bound
functional around p(v). On the other hand, since z ⊥ [L, v],

〈z, p(v)〉 = 〈z, tvv + wv〉 = 0

and

〈z, p(v(s))〉 = 〈z, tsv(s) + ws〉

= 〈z, ts
v + sw

‖v + sw‖ + ws〉 = − sign(tv)tss‖z‖
‖v + sw‖ ,

where p(v(s)) = tsv(s) +ws and ws ∈ L. According to the continuity of p at v and
d(p(v), L) > 0,

sign(tv) = sign(ts)

for small s > 0. Since ‖v‖ = 1,

‖v + sw‖ ≤ 2

for small s > 0. Thus, we have

J(p(v(s)))− J(p(v)) ≤ − sign(tv)tss‖z‖
‖v + sw‖ + F (p(v(s)); p(v), z)

≤ −1

2
s|tv|‖z‖+ F (p(v(s)); p(v), z)

for small s > 0. By super-linear property of p at v, there is a upper-bound functional
F0(p(v(s)); p(v), z) around p(v) such that

lim
v(s)→v

|F0(p(v(s)); p(v), z)|
‖v(s)− v‖ = 0.

Then, by (2.6),

lim
s→0

|F0(p(v(s)); p(v), z)|
s

= 0.

Therefore, since p(v) is not a critical point and d(p(v), L) > 0, as s > 0 is small,

J(p(v(s)))− J(p(v)) < −1

4
s|tv|‖z‖. �
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Remark 2.15. (a) The existence of z ∈ ∂J(p(v))∩ [L, v]⊥ is guaranteed by Lemma
2.2.

(b) Comparing Lemma 2.14 with Lemma 3 in [13], the difference is different
elements of generalized gradient are used to decide descent direction. In this lemma,
z ∈ ∂J(p(v)) with z ⊥ [L, v] is used. In Lemma 3 in [13], z ∈ ∂J(p(v)) with
‖z‖ = min{‖ζ‖|ζ ∈ ∂J(p(v))} is used. If p is continuous at v ∈ SL⊥ , for a sequence
of generalized gradients {zn} such that zn ∈ ∂J(p(vn)) ∩ [L, vn]

⊥, {vn} ⊂ SL⊥ ,
zn → z and vn → v, we have z ∈ ∂J(p(v)) ∩ [L, v]⊥. This property is crucial to
the convergence of our minimax algorithm. For a sequence of generalized gradients
{zn} such that ‖zn‖ = min{‖ζ‖|ζ ∈ ∂J(p(vn))}, {vn} ⊂ SL⊥ , zn → z and vn → v,
we do have z ∈ ∂J(p(v)) under the assumption that p is continuous at v ∈ SL⊥ .
But, we do not know if ‖z‖ = min{‖ζ‖|ζ ∈ ∂J(p(v))}.

(c) Comparing this lemma with Lemma 2.1 in [10], we assume super-linear
property of p at v here instead of continuity of p at v in Lemma 2.1 in [10]. By
Lemma 2.13, if J ∈ C1(H,R), these two assumptions are equivalent.

By Lemma 2.14, a local minimax characterization for nonsmooth saddle critical
points in [13] can be reestablished to upper semi-differentiable locally Lipschitz
continuous functionals as follows.

Theorem 2.16. Let H be a Hilbert space with H = L⊕L⊥ for a finite dimensional
subspace L ⊂ H. Assume that J is a upper semi-differentiable locally Lipschitz
continuous functional and p is a local peak selection of J w.r.t. L at v ∈ SL⊥ such
that

(a) p has super-linear property at v and d(p(v), L) > 0, and
(b) v is a local minimum point of J(p(·)) on SL⊥ .

Then, p(v) is a critical point of J .

Proof. If p(v) is not a critical point of J , then by Lemma 2.14, as s > 0 is small,

J(p(v(s)))− J(p(v)) < −1

4
s|tv|‖z‖,

where v(s) =
v + sw

‖v + sw‖ , w = −sign(tv)
z

‖z‖ , z ∈ ∂J(p(v))∩ [L, v]⊥, p(v) = tvv +wv

and wv ∈ L. It is a contradiction to assumption (b). �
Remark 2.17. (a) Suppose that a critical point u is characterized by Theorem 2.16.
Then, u = p(v) means, for any neighborhood N (u) of u, there is u1 ∈ [L, v] such
that u1 ∈ N (u) and J(u1) < J(u) except that J is a constant functional around u on
[L, v], and, u = p(v) and v is a local minimum point of J(p(·)) on SL⊥ mean, in any
neighborhood N (u) of u, there is v2 ∈ SL⊥ around v such that u2 = p(v2) ∈ N (u)
and J(u2) = J(p(v2)) > J(p(v)) = J(u) except that J(p(·)) is a constant functional
around v on SL⊥ . Therefore, except extreme cases, in any neighborhood N (u) of
u = p(v), there are u1, u2 ∈ N (u) such that J(u1) < J(u) < J(u2), i.e., u is a
saddle point of J .

(b) Comparing this theorem with Theorem 2.1 in [10], we assume super-linear
property of p at v in this theorem instead of continuity of p at v in Theorem 2.1 in
[10]. By Lemma 2.13, if J ∈ C1(H,R), these two assumptions are equivalent.

According to Lemma 2.14 and Theorem 2.16, we can design a minimax algorithm
for capturing saddle critical points of an upper semi-differentiable locally Lipschitz
continuous functional J . Assume that u1, u2, ..., un−1 are found critical points,
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L = [u1, u2, ..., un−1], λ > 0 is a constant and ε is a small positive number. The
following is the flow chart for the algorithm.

Step 1. Choose v1n ∈ SL⊥ .
Step 2. Set k = 1 and solve for

uk
n = p(vkn) = tk0v

k
n + tk1u1 + · · ·+ tkn−1un−1

= argmax
{
J(t0v

k
n + t1u1 + · · ·+ tn−1un−1)|ti ∈ R, i = 0, 1, ..., n− 1

}
.

Step 3. Find a descent direction wk
n = −sign(tk0)

zk
n

‖zk
n‖

at uk
n, where zkn ∈ ∂J(uk

n) ∩
[L, vkn]

⊥.
Step 4. If ‖zkn‖ < ε, then output uk

n, stop. Otherwise, do Step 5.

Step 5. For each s > 0, let vkn(s) =
vkn + swk

n

‖vkn + swk
n‖

and use initial point (tk0 , t
k
1 , ..., t

k
n−1)

to solve for

p(vkn(s)) = argmax
{
J(t0v

k
n(s) +

n−1∑
i=1

tiui)|ti ∈ R, i = 0, 1, ..., n− 1
}
,

then set vk+1
n = vkn(s

k
n) and uk+1

n = p(vk+1
n ) = tk+1

0 vk+1
n + tk+1

1 u1 + · · · +
tk+1
n−1un−1, where skn satisfies

skn = max
{
s =

λ

2m
|m ∈ N, J(p(vkn(s)))− J(p(vkn)) ≤ −1

4
|tk0 |s‖zkn‖

}
.

Step 6. Update k = k + 1 and go to Step 3.

Remark 2.18. (a) In Step 1, we would like to choose v1n ∈ SL⊥ such that it is
an increasing-decreasing direction at un−1, i.e., φ(t) = J(un−1 + tv1n) increases on
[0, t̄] and decreases on [t̄, t̂]. Then, a local maximum point t̄ of φ(t) can be used to
construct (t0, t1, ..., tn−2, tn−1) = (t̄, 0, ..., 0, 1) as an initial point to calculate u1

n.
(b) In Step 5, we usually set 0 < λ < 1 to prevent the stepsize from being too

large to lose search stability.
(c) Suppose that u = 0 is a found critical point (usually a minimum point) of

J . Then, set L = {0} and use the above algorithm to find a new critical point.
Denote u1 as a new critical point. Then, set L = [0, u1] = [u1] and carry out the
above algorithm to calculate a new critical point, u2. Thus, set L = [u1, u2] and
implement the above algorithm to compute a new critical point, u3, and so on.
That is the usual way to use this minimax algorithm. If u0 �≡ 0 is a found critical
point (usually a minimum point) of J , then, I(u) = J(u + u0) has critical point
u = 0. The above algorithm will be implemented to I to find critical points of J .

(d) In Step 5, from m = 1, we solve an n-dimensional optimization problem to
get p(vkn(s)) and check if

(2.7) J(p(vkn(s)))− J(p(vkn)) ≤ −1

4
|tk0 |s‖zkn‖

for s = λ
2m , m ∈ N , one by one. As soon as we get mk

n ∈ N such that (2.7)

holds for s = λ

2m
k
n
, we set skn = λ

2m
k
n
, vk+1

n = vkn(s
k
n) and uk+1

n = p(vk+1
n ). When n

becomes larger, generally we have to do more calculation to solve the n-dimensional
optimization problem for p(vkn(s)).

(e) Numerical experiments show that generally the iteration number in k will
grow with n.
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3. Convergence

Before establishing convergence for the minimax algorithm, we generalize it to
an L-⊥ algorithm. First, L-⊥ selection should be defined to a locally Lipschitz
continuous functional J and a closed subspace L in Hilbert space H.

Definition 3.1. A set-valued mapping P : SL⊥ → 2H is the L-⊥ mapping of a
locally Lipschitz continuous functional J w.r.t. L if ∀v ∈ SL⊥ , P (v) = {u ∈ [L, v] :
∂J(u) ∩ [L, v]⊥ �= ∅}. A single-valued mapping p : SL⊥ → H is an L-⊥ selection of
the locally Lipschitz continuous functional J w.r.t. L if p(v) ∈ P (v), ∀v ∈ SL⊥ .
For a given v ∈ SL⊥ , if p is locally defined in a neighborhood of v, we say that J
has a local L-⊥ selection p at v.

Remark 3.2. If L ⊂ H is a finite dimensional subspace, by Lemma 2.2, it is clear
that a peak selection w.r.t. L is an L-⊥ selection w.r.t. L.

Then, it is easy to check that Lemma 2.14 and Theorem 2.16 are also correct
to an L-⊥ selection p. By this generalization, an L-⊥ algorithm for capturing
saddle critical points of a upper semi-differentiable locally Lipschitz continuous
functional J can be designed. Assume that u1, u2, ..., un−1 are found critical points,
L = [u1, u2, ..., un−1, λ > 0 is a constant and ε is a small positive number. The
flow chart for the algorithm is given as follows.

Step 1. Choose v1n ∈ SL⊥ .
Step 2. Set k = 1 and find uk

n = p(vkn) = tk0v
k
n + tk1u1 + · · ·+ tkn−1un−1 such that

∂J(uk
n) ∩ [L, vkn]

⊥ �= ∅.

Step 3. Find a descent direction wk
n = −sign(tk0)

zk
n

‖zk
n‖

at uk
n, where zkn ∈ ∂J(uk

n) ∩
[L, vkn]

⊥.
Step 4. If ‖zkn‖ < ε, then output uk

n, stop. Otherwise, do Step 5.

Step 5. For each s > 0, let vkn(s) =
vkn + swk

n

‖vkn + swk
n‖

and find p(vkn(s)) = t0(s)v
k
n(s) +∑n−1

i=1 ti(s)ui such that

∂J(p(vkn(s))) ∩ [L, vkn(s)]
⊥ �= ∅,

then set vk+1
n = vkn(s

k
n) and uk+1

n = p(vk+1
n ) = tk+1

0 vk+1
n + tk+1

1 u1 + · · · +
tk+1
n−1un−1, where skn satisfies

skn = max
{
s =

λ

2m
|m ∈ N, J(p(vkn(s)))− J(p(vkn)) ≤ −1

4
|tk0 |s‖zkn‖

}
.

Step 6. Update k = k + 1 and go to Step 3.

To discuss convergence of the L-⊥ algorithm, we need the following nonsmooth
version of PS condition [5] and SC-condition in Banach space B.

Definition 3.3. A locally Lipschitz continuous functional J : B → R satisfies the
PS condition if any {un} ⊂ B such that {J(un)} is bounded and ζn → 0, where
ζn ∈ ∂J(un) and ‖ζn‖ = min{‖ζ‖|ζ ∈ ∂J(un)}, possesses a convergent subsequence.

Definition 3.4. A locally Lipschitz continuous functional J : B → R satisfies the
SC-condition if any {ζn|ζn ∈ ∂J(un)}, where un → u, possesses a subsequence
{ζni

} such that ζni
→ ζ ∈ ∂J(u).
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Remark 3.5. Since the algorithms are for upper semi-differentiable locally Lipschitz
continuous functional J , generalized gradient is used instead of gradient. Then, the
continuity of gradient to functional J ∈ C1(B,R) is lost. The SC-condition is
defined instead for generalized gradient of locally Lipschitz continuous functional.
It may be considered as a “subsequence-continuity-condition”. The SC-condition
is crucial to establish subsequence and sequence convergence for the algorithm. On
the other hand, for functional J ∈ C1(B,R), the SC-condition is automatically
satisfied.

For the SC-condition, the following lemma can be verified.

Lemma 3.6. If Ω ⊂ R
n is an open bounded domain, f(x, t) is a measurable func-

tion on Ω× R
n and f(x, t) satisfies

|f(x, t)| ≤ C1 + C2|t|σ,
for x ∈ Ω and t ∈ R, where 0 < σ < n+2

n−2 for n ≥ 3, σ > 0 for n = 1, 2
and C1, C2 > 0 are two constants, then the locally Lipschitz continuous functional

G(u) =
∫
Ω

∫ u(x)

0
f(x, s)dsdx satisfies the SC-condition in H1

0 (Ω).

Proof. First, according to Chang [5], G(u) =
∫
Ω

∫ u(x)

0
f(x, s)dsdx is locally Lips-

chitz continuous in Lσ+1(Ω) and H1
0 (Ω) as well. Suppose that un → u in H1

0 (Ω).
By the Sobolev embedding theorem, un → u in Lσ+1(Ω). By Theorem 2.2 in [5]
and (b) in Proposition 1.7, {ζn|ζn ∈ ∂J(un)} is bounded in Lη(Ω), where η = σ+1

σ .
Since Lη(Ω) is reflexive, {ζn} has a subsequence which is weakly convergent to
ζ ∈ ∂J(u). We assume that ζn → ζ weakly in Lη(Ω). Then, {ζn} must have
a subsequence which is convergent to ζ in H−1(Ω). Otherwise, there is ε > 0
such that ‖ζn − ζ‖H−1(Ω) ≥ ε. This means there is {ξn}, where ξn ∈ H1

0 (Ω) and
‖ξn‖H1

0 (Ω) = 1, and ρ > 0 such that

(3.1)

∫
Ω

(ζn(x)− ζ(x))ξn(x)dx ≥ ρ.

By the Rellich-Kondrachov theorem (cf. [1]), {ξn} has a subsequence which is
convergent to ξ in Lσ+1(Ω). We can assume ξn → ξ. Then,

|
∫
Ω

(ζn(x)− ζ(x))ξn(x)dx|

≤
∫
Ω

|(ζn(x)− ζ(x))(ξn(x)− ξ(x))|dx+ |
∫
Ω

(ζn(x)− ζ(x))ξ(x)dx|

≤ ‖ζn − ζ‖Lη(Ω)‖ξn − ξ‖Lσ+1(Ω) + |
∫
Ω

(ζn(x)− ζ(x))ξ(x)dx|

≤ (‖ζn‖Lη(Ω) + ‖ζ‖Lη(Ω))‖ξn − ξ‖Lσ+1(Ω) + |
∫
Ω

(ζn(x)− ζ(x))ξ(x)dx|,

where η = σ+1
σ , means ∫

Ω

(ζn(x)− ζ(x))ξn(x)dx → 0.

This is a contradiction to (3.1). Thus, {ζn} has a subsequence which is convergent
to ζ in H−1(Ω). Hence, by (f) in Proposition 1.7, the locally Lipschitz continuous

functional G(u) =
∫
Ω

∫ u(x)

0
f(x, s)dsdx satisfies the SC-condition in H1

0 (Ω). �
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Remark 3.7. A similar result can be established in Banach space W 1,q
0 (Ω), q > 1.

To establish subsequence convergence, the following lemma is crucial.

Lemma 3.8. Let H be a Hilbert space with H = L ⊕ L⊥ for a finite dimensional
subspace L ⊂ H. Assume that J is a upper semi-differentiable locally Lipschitz
continuous functional and p is a local L-⊥ selection of J w.r.t. L around v ∈
SL⊥ such that p(v) is not a critical point, p has super-linear property at v and
d(p(v), L) > 0. If vj → v and zj → z, where vj ∈ SL⊥ , zj ∈ ∂J(p(vj)) ∩ [L, vj ]

⊥

and z ∈ ∂J(p(v))∩ [L, v]⊥, then there is s0 = λ
2m0

, m0 ∈ N such that, as j is large,

J(p(vj(s0)))− J(p(vj)) < −1

4
s0|tj |‖zj‖,

where vj(s0) =
vj + s0wj

‖vj + s0wj‖
, wj = −sign(tj)

zj
‖zj‖ , p(vj) = tjvj + uj, uj ∈ L.

Proof. By Lemma 2.14, as s > 0 is small,

J(p(v(s)))− J(p(v)) < −1

4
s|tv|‖z‖,

where v(s) =
v + sw

‖v + sw‖ , w = −sign(tv)
z

‖z‖ and p(v) = tvv + u, u ∈ L. Thus, since

p is continuous at v, vj → v and zj → z, there is s0 = λ
2m0

, m0 ∈ N such that, as j
is large,

J(p(vj(s0)))− J(p(vj)) < −1

4
s0|tj |‖zj‖,

where vj(s0) =
vj + s0wj

‖vj + s0wj‖
, wj = −sign(tj)

zj
‖zj‖ , p(vj) = tjvj + uj , uj ∈ L. �

First, we prove a subsequence convergence result for the L-⊥ algorithm.

Theorem 3.9. If an upper semi-differentiable locally Lipschitz continuous func-
tional J satisfies the PS condition and the SC-condition, λ ∈ (0, 1), {vkn} is a
sequence generated by the L-⊥ algorithm and the L-⊥ selection p of J satisfies:

(a) p has super-linear property on SL⊥ ,
(b) d(p(vkn), L) ≥ α > 0, ∀k = 1, 2, ..., and
(c) inf1≤k<∞ J(p(vkn)) > −∞,

then,
(d) {vkn} has a subsequence {vki

n } such that uki
n = p(vki

n ) converges to a critical
point of J ,

(e) if a subsequence vki
n → v0 as i → ∞, then u0 = p(v0) is a critical point of J .

Proof. (a) By the step-size rule, we have

(3.2) J(uk+1
n )− J(uk

n) ≤ −1

4
|tk0 |skn‖zkn‖,

for k = 1, 2, .... On the other hand, by Lemma 2.4,

‖vk+1
n − vkn‖ = ‖ vkn + sknw

k
n

‖vkn + sknw
k
n‖

− vkn‖

≤ 2‖sknwk
n‖

‖vkn + sknw
k
n‖

≤ 2skn
|1− skn|

≤ 2skn
1− λ

and, by assumption (b),

(3.3) |tk0 | ≥ d(p(vkn), L) ≥ α.
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Then,

(3.4) J(uk+1
n )− J(uk

n) ≤ −1

4
|tk0 |skn‖zkn‖ ≤ − (1− λ)

8
α‖vk+1

n − vkn‖‖zkn‖.

Thus, there is a subsequence zki
n → 0. Otherwise, there is δ > 0 such that ‖zkn‖ ≥ δ

for any k. From (3.4), we have

(3.5) J(uk+1
n )− J(uk

n) ≤ − (1− λ)

8
αδ‖vk+1

n − vkn‖, ∀k = 1, 2, ....

Adding up two sides of (3.5) gives

(3.6) lim
k→∞

J(uk
n)− J(u1

n) =

∞∑
k=1

[J(uk+1
n )− J(uk

n)] ≤ − (1− λ)

8
αδ

∞∑
k=0

‖vk+1
n − vkn‖,

i.e., {vkn} is a Cauchy sequence. Thus vkn → v̂ ∈ SL⊥ . Since J satisfies the SC-
condition and p is continuous, there is a subsequence zki

n → z ∈ ∂J(p(v̂)) ∩ [L, v̂]⊥

with z �= 0. On the other hand, by (3.3) and adding up two sides of (3.4), we have

lim
k→∞

J(uk
n)− J(u1

n) ≤ −1

4

∞∑
k=1

|tk0 |skn‖zkn‖ ≤ −1

4
αδ

∞∑
k=0

skn,

or skn → 0 as k → ∞. It contradicts Lemma 3.8. When there is a subsequence
zki
n → 0, by the PS condition, we can assume uki

n = p(vki
n ) → u0. By (f) in

Proposition 1.7, 0 ∈ ∂J(u0), i.e., u0 is a critical point.
(b) Suppose u0 = p(v0) is not a critical point. Then, there is δ > 0 such that

‖zki
n ‖ ≥ δ, i = 1, 2, .... By (3.2) and (3.3), we have

J(uki+1
n )− J(uki

n ) ≤ −1

4
|tki
0 |ski

n ‖zki
n ‖ < −1

4
αδski

n .

Since
∑∞

k=1[J(u
k+1
n )−J(uk

n)]=limk→∞ J(uk
n)−J(u1

n), it leads to limi→∞(J(uki+1
n )−

J(uki
n )) = 0. Hence, lim

i→∞
ski
n = 0. This contradicts Lemma 3.8. Thus, u0 is a critical

point. �

Remark 3.10. Comparing this theorem with Theorem 3.2 in [11], we assume super-
linear property of p on SL⊥ in this theorem instead of continuity of p on SL⊥ in
Theorem 3.2 in [11]. By Lemma 2.13, if J ∈ C1(H,R), these two assumptions are
equivalent.

To give a sequence convergence, the following Ekeland’s variational principle [12]
will be used first to prove an abstract existence-convergence result that is actually
independent of the algorithm.

Lemma 3.11 (Ekeland’s variational principle). Let X be a complete metric space
and J : X → R∪{+∞} be an upper semicontinuous functional bounded from below.
Then, for any ε > 0 and x0 ∈ X with J(x0) < +∞, there is x̄ ∈ X such that

J(x̄) + εd(x0, x̄) ≤ J(x0) and J(x) + εd(x, x̄) > J(x̄) ∀x ∈ X and x �= x̄.

Then, sequence convergence results are presented as Corollary 3.14 and Theorem
3.17 by this abstract existence-convergence result. Denote K = {u ∈ B|0 ∈ ∂J(u)}
and Kc = {u ∈ B|0 ∈ ∂J(u), J(u) = c}, where J is a locally Lipschitz continuous
functional in Banach space B. If J satisfies the PS condition, Kc is compact.
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Theorem 3.12. Let H be a Hilbert space with H = L⊕L⊥ for a finite dimensional
subspace L ⊂ H and U = V ∩ SL⊥ �= ∅, where V ⊂ H is open. Assume that an
upper semi-differentiable locally Lipschitz continuous functional J satisfies the PS
condition and an L-⊥ selection p of J satisfies:

(a) p has super-linear property in U and p is continuous on Ū , where Ū is the
closure of U on SL⊥ ,

(b) infv∈U d(p(v), L) ≥ α > 0, and
(c) infv∈∂Ū J(p(v)) > c = infv∈U J(p(v)) > −∞, where ∂Ū is the boundary of

Ū on SL⊥ .
Then, Kp

c = p(U) ∩ Kc �= ∅, where p(U) = {p(u)|u ∈ U} and for any {vk} ⊂ U
with J(uk) → c, where uk = p(vk), we have

lim
k→∞

d(uk,Kp
c ) = 0.

Proof. Define

Ĵ(p(v)) =
{ J(p(v)) v ∈ Ū ,

+∞ v /∈ Ū .

Then, Ĵ(p(·)) is upper semicontinuous and bounded from below on the complete
metric space SL⊥ . By assumption (c), either there is v ∈ U such that J(p(v)) = c
or there is a sequence {vk} ⊂ U such that J(p(vk)) > c and J(p(vk)) → c. For
the first case, p(v) ∈ Kp

c = p(U) ∩Kc by Theorem 2.16. Of course, Kp
c �= ∅. For

the second case, denote uk = p(vk). Applying Ekeland’s variational principle to

Ĵ(p(·)), for every vk ∈ U and δk = (J(uk)− c)
1
2 , there is v̄k ∈ SL⊥ such that

Ĵ(p(v̄k))− Ĵ(p(v)) < δk‖v̄k − v‖ ∀v ∈ SL⊥ ,(3.7)

Ĵ(p(v̄k))− Ĵ(p(vk)) ≤ −δk‖v̄k − vk‖.(3.8)

By (3.8), the definition of Ĵ(p(·)) and vk ∈ U , we have v̄k ∈ Ū and then, from (3.7)
and (3.8),

J(p(v̄k))− J(p(v)) < δk‖v̄k − v‖ ∀v ∈ U,(3.9)

J(p(v̄k))− J(p(vk)) ≤ −δk‖v̄k − vk‖.(3.10)

It follows

(3.11) c ≤ J(p(v̄k)) ≤ J(uk)− δk‖v̄k − vk‖,

i.e,

(3.12) ‖v̄k − vk‖ ≤ δk.

Then, by (3.11) and (3.12), J(uk) = J(p(vk)) → c implies J(p(v̄k)) → c. Thus, by
assumptions (b) and (c), we have v̄k ∈ U and

(3.13) d(p(v̄k), L) ≥ α > 0

for large k. For these large k, if there is nonzero z̄k ∈ ∂J(p(v̄k)) ∩ [L, v̄k]⊥, then,
when s is small, by Lemma 2.14,

J(p(v̄k(s)))− J(p(v̄k)) < −s

4
|t̄k|‖z̄k‖,
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where v̄k(s) =
v̄k + swk

‖v̄k + swk‖ ∈ U , wk = −sign(t̄k) z̄k

‖z̄k‖ , p(v̄
k) = t̄kv̄k+w̄k and w̄k ∈ L

and by Lemma 2.4,

‖vk(s)− vk‖ = ‖ vk + swk

‖vk + swk‖ − vk‖ ≤ 2‖swk‖
‖vk + swk‖ ≤ 2s

1− s
≤ 4s,

i.e.,

J(p(v̄k(s)))− J(p(v̄k)) < − 1

16
α‖z̄k‖‖v̄k(s)− v̄k‖,

by (3.13). Hence, by (3.9), we have

(3.14) ‖z̄k‖ <
16

α
δk,

which implies z̄k → 0. Then, by the PS condition, {p(v̄k)} has a convergent sub-
sequence {p(v̄kj )}. Since {p(v̄kj )} is convergent, v̄kj ∈ SL⊥ and w̄kj ∈ L, {tkj v̄kj}
is convergent, i.e., we can assume {tkj} and {v̄kj} are both convergent by (3.13).
Denote v̄ = limj→∞ v̄kj . By (f) in Proposition 1.7 and (3.14), 0 ∈ ∂J(p(v̄)), i.e.,
p(v̄) is a critical point and by (3.12), v̄ = limj→∞ vkj . By assumption (a),

p(v̄) = lim
j→∞

p(vkj ) and J(p(v̄)) = c

and then, by assumption (c), it is clear that

v̄ ∈ U and ū = p(v̄) ∈ Kp
c �= ∅.

For any {vk} ⊂ U with J(uk) → c, where uk = p(vk), let β be any limit point of
{d(uk,Kp

c )} and ukj = p(vkj ) ∈ {uk} such that limj→∞ d(ukj ,Kp
c ) = β. If there

is a subsequence {ukji} ⊆ {ukj} such that J(ukji ) = c, then, by Theorem 2.16,
ukji ∈ Kp

c , i.e., β = 0. Otherwise, we can assume J(ukj ) > c, j = 1, 2, .... Consider
{ukj} as {uk}. To {ukj}, by using above argument for {uk}, we know there is a
subsequence {ukji} ⊆ {ukj} such that ū = limi→∞ p(vkji

) ∈ Kp
c , i.e., β = 0. Thus,

every limit point of {d(uk,Kp
c )} is zero, i.e.,

lim
k→∞

d(uk,Kp
c ) = 0. �

Remark 3.13. Comparing this theorem with Theorem 3.5 in [15], we assume super-
linear property of p in U and continuity of p on Ū , where Ū is the closure of U
on SL⊥ in this theorem instead of continuity of p on Ū , where Ū is the closure of
U on SL⊥ in Theorem 3.5 in [15]. By Lemma 2.13, if J ∈ C1(H,R), these two
assumptions are equivalent.

Corollary 3.14. Let H be a Hilbert space with H = L⊕L⊥ for a finite dimensional
subspace L ⊂ H and V1, V2 ⊂ H two open sets with ∅ �= U2 ≡ V2∩SL⊥ ⊂ V1∩SL⊥ ≡
U1. Assume that a upper semi-differentiable locally Lipschitz continuous functional
J satisfies the PS condition and an L-⊥ selection p of J satisfies:

(a) p has super-linear property in U1,
(b) infv∈U1

d(p(v), L) ≥ α > 0 and c = infv∈U1
J(p(v)) > −∞,

(c) there is d > 0 with

inf{J(p(v))|v ∈ U1, d(v, ∂U1) ≤ d} = a > b = sup{J(p(v))|v ∈ U2},
where ∂U1 is the boundary of U1 on SL⊥ ,

(d) given {vk} such that v1 ∈ U2, ‖vk+1 − vk‖ < d, J(uk+1) < J(uk) and {uk}
has a subsequence that converges to a critical point u0, where uk = p(vk), and

(e) Kp
c = p(U1) ∩K ⊂ Kc, where p(U1) = {p(u)|u ∈ U1}.
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Then,
lim
k→∞

d(uk,K
p
c ) = 0.

Proof. First, we prove that vk ∈ U1 and d(vk, ∂U1) > d, k = 1, 2, .... In fact, if
vk ∈ U1, d(vk, ∂U1) > d and J(uk) ≤ b, then, by assumption (d), vk+1 ∈ U1 and
J(uk+1) < b, i.e., vk+1 ∈ U1 and d(vk+1, ∂U1) > d by assumption (c). Thus, since
v1 ∈ U2, we have vk ∈ U1 and d(vk, ∂U1) > d for k = 1, 2, ..., by assumption (c).
Since Kp

c = p(U1) ∩ K ⊂ Kc and {uk} has a subsequence which converges to a
critical point u0, we have u0 ∈ Kp

c �= ∅. Denote U = {v ∈ U1|d(v, ∂U1) > d}. Then,
by the monotonicity of {J(uk)}, we have J(uk) → c = infv∈U J(p(v)) as k → ∞,
and

inf
v∈∂Ū

J(p(v)) ≥ a > b ≥ J(p(v1)) ≥ c = inf
v∈U

J(p(v)),

where ∂Ū is the boundary of U on SL⊥ . Thus, all assumptions of Theorem 3.12
are satisfied and the conclusion follows. �
Remark 3.15. Comparing this corollary with Corollary 3.6 in [15], we assume super-
linear property of p in U1 in this theorem instead of continuity of p in U1 in Corollary
3.6 in [15]. By Lemma 2.13, if J ∈ C1(H,R), these two assumptions are equivalent.

To better understand Corollary 3.14, we give the following lemma.

Lemma 3.16. Let H be a Hilbert space with H = L⊕L⊥ for a finite dimensional
subspace L ⊂ H and V1, V2 ⊂ H two open sets with ∅ �= U2 ≡ V2∩SL⊥ ⊂ V1∩SL⊥ ≡
U1. Assume that an upper semi-differentiable locally Lipschitz continuous functional
J satisfies the PS condition and the SC-condition, an L-⊥ selection p of J satisfies:

(a) p has super-linear property in U1,
(b) infv∈U1

d(p(v), L) ≥ α > 0 and c = infv∈U1
J(p(v)) > −∞,

(c) there is d > 0 with

inf{J(p(v))|v ∈ U1, d(v, ∂U1) ≤ d} = a > b = sup{J(p(v))|v ∈ U2},
where ∂U1 is the boundary of U1 on SL⊥ , and {vkn} is a sequence generated by
the L-⊥ algorithm according to the L-⊥ selection p with initial point v1n ∈ U2 and
λ ∈ (0, d

d+2 ). Then, ‖vk+1
n −vkn‖ < d, J(uk+1

n ) < J(uk
n) and {uk

n} has a subsequence

that converges to a critical point u0
n, where uk

n = p(vkn).

Proof. First, by Lemma 2.4, we have

‖vk+1
n − vkn‖ = ‖ vkn + sknw

k
n

‖vkn + sknw
k
n‖

− vkn‖ ≤ 2‖sknwk
n‖

‖vkn + sknw
k
n‖

≤ 2skn
|1− skn|

≤ 2λ

1− λ
.

Then, λ ∈ (0, d
d+2 ) guarantees

‖vk+1
n − vkn‖ < d.

Since the L-⊥ algorithm is a descent method, we have

J(uk+1
n ) < J(uk

n).

Consider {vkn} as {vk}. By exactly mimicking the verification of Corollary 3.14 to
{vk}, we can show that

{vkn} ⊂ U = {v ∈ U1|d(v, ∂U1) > d},
where ∂U1 is the boundary U1 on SL⊥ . Thus,

{vkn} ⊂ U1,
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where {vkn} is the closure of {vkn} on SL⊥ . Then, by exactly mimicking the verifi-
cation of Theorem 3.9, we can prove that {uk

n} has a subsequence that converges
to a critical point u0

n. �

By Corollary 3.14 and Lemma 3.16, Theorem 3.17 immediately follows.

Theorem 3.17. Let H be a Hilbert space with H = L⊕L⊥ for a finite dimensional
subspace L ⊂ H and V1, V2 ⊂ H two open sets with ∅ �= U2 ≡ V2∩SL⊥ ⊂ V1∩SL⊥ ≡
U1. Assume that an upper semi-differentiable locally Lipschitz continuous functional
J satisfies the PS condition and the SC-condition, an L-⊥ selection p of J satisfies

(a) p has super-linear property in U1,
(b) infv∈U1

d(p(v), L) ≥ α > 0 and c = infv∈U1
J(p(v)) > −∞,

(c) there is d > 0 with

inf{J(p(v))|v ∈ U1, d(v, ∂U1) ≤ d} = a > b = sup{J(p(v))|v ∈ U2},
where ∂U1 is the boundary of U1 on SL⊥ , and

(d) Kp
c = p(U1) ∩K ⊂ Kc, where p(U1) = {p(u)|u ∈ U1},

and {vkn} is a sequence generated by the L-⊥ algorithm according to the L-⊥ selec-
tion p with initial point v1n ∈ U2 and λ ∈ (0, d

d+2 ). Then,

lim
k→∞

d(uk
n,K

p
c ) = 0.

4. Numerical experiment results

As we pointed out before, a typical example on application of nonsmooth critical
point theory to partial differential equations is the Dirichlet problem (1.1), i.e.,{

−Δu(x) = f(x, u(x)), x ∈ Ω,
u(x)|x∈∂Ω = 0,

where Ω is an open bounded domain in R
m with smooth boundary ∂Ω, f(x, t) is

a measurable function defined on Ω × R and for every x ∈ Ω, f(x, t) is locally
bounded. The corresponding variational functional on H1

0 (Ω) is

(4.1) J(u) =
1

2

∫
Ω

|∇u(x)|2dx−
∫
Ω

F (x, u(x))dx,

where F (x, t) =
∫ t

0
f(x, s)ds. Denote G(u) =

∫
Ω
F (x, u(x))dx. By Theorem 1.3, to

find a u0 ∈ H1
0 (Ω) such that

−Δu0(x) ∈ [f̄(x, u0(x)), f̂(x, u0(x))]

for all x ∈ Ω, we can find a critical point of J (4.1). As a numerical example, we
set

(4.2) f(x, t) =

{
cα|x|r|t|α−2t, if |t| > 1,
cβ|x|r|t|β−2t, if |t| ≤ 1,

where c > 0, α > β > 2, α < 2m
m−2 for m ≥ 3, r ≥ 0 and |x| is the Euclidean

norm of x ∈ R
m. If c = 1, α = β > 2 and r = 0 in (4.2), the Dirichlet problem

(1.1) is the Lane-Emden equation and if c = 1, α = β > 2 and r > 0 in (4.2), the
Dirichlet problem (1.1) is the Hénon equation. These two equations were used as
numerical examples for finding smooth saddle critical points [6], [10], [11]. If r ≥ 0,
α > β > 2 and α < 2m

m−2 for m ≥ 3, J (4.1) is locally Lipschitz continuous and

it is not differentiable everywhere. If c > 0, r ≥ 0, α > β > 2 and α < 2m
m−2 for
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m ≥ 3, it is easy to check that f(x, t) in (4.2) satisfies all assumptions in Theorem
1.5. Thus,

(4.3) F (x, t) =

{
c|x|r|t|α, if |t| > 1,
c|x|r|t|β , if |t| ≤ 1,

and

(4.4) ∂G(u) = {ζ : Ω → R|ζ is measurable, ζ(x) ∈ f+
− (x, u(x)) ∀x ∈ Ω},

where

f+
− (x, u(x)) = [f(x, u(x)− 0), f(x, u(x) + 0)]

=

⎧⎪⎪⎨
⎪⎪⎩

{cα|x|r|u(x)|α−2u(x)}, if |u(x)| > 1,
{cβ|x|r|u(x)|β−2u(x)}, if |u(x)| < 1,
[cβ|x|r, cα|x|r], if u(x) = 1,
[−cα|x|r,−cβ|x|r], if u(x) = −1.

f(x, t) in (4.2) with α = 6, β = 4, r = 0 and c = 1 is an example in [13].
Before we discuss the details on numerical experiment, we establish several lem-

mas for J (4.1).

Lemma 4.1. Assume that L = {0}, f(x, t) is a measurable function defined on
Ω× R and satisfies:

(a)
|f(x, t)| ≤ C1 + C2|t|σ

for x ∈ Ω and t ∈ R, where 0 < σ < m+2
m−2 for m ≥ 3, σ > 0 for m = 1, 2 and

C1, C2 > 0 are two constants,
(b) G(tv) ≥ 0 and G(tv) = o(t2) as t → 0 and t → ∞, for every v ∈ SL⊥ .

Then, the peak mapping

P (v) = {tv|t > 0 such that J(tv) = max
s≥0

J(sv)}

is well defined on SL⊥ , i.e., P (v) �= ∅ for each v ∈ SL⊥ .

Proof. First, similar to Lemma 3.6, assumption (a) guarantees that J (4.1) is locally
Lipschitz continuous on H1

0 (Ω). Then, denote I(t) = J(tv) for v ∈ SL⊥ . Since
G(tv) = o(t2) as t → 0, we have

I(t) = t2(
1

2

∫
Ω

|∇v(x)|2dx− G(tv)

t2
) = t2(

1

2
− G(tv)

t2
) > 0

as t > 0 is small and since G(tv) ≥ 0 and G(tv) = o(t2) as t → ∞, we have

I(t) = t2(
1

2
− G(tv)

t2
) → −∞

as t → +∞. Thus, by the continuity of I(t) and I(0) = 0, there is at least one
tv > 0 such that tv is a local maximum point of I(t), i.e.,

P (v) = {tv|t > 0 such that J(tv) = max
s≥0

J(sv)} �= ∅. �

Remark 4.2. For our numerical example, by (4.2),

|f(x, t)| ≤ C1 + C2|t|α−1,

where C1 = cβbr, C2 = cαbr and b is a bound of Ω and by (4.3), G(u) =∫
Ω
F (x, u(x))dx satisfies that G(tv) ≥ 0 and G(tv) = o(t2) as t → 0 and t → ∞,

for every v ∈ SL⊥ .
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Lemma 4.3. Assume that L = {0}, J (4.1) is locally Lipschitz continuous on
H1

0 (Ω), the peak mapping P (v) = {tv|t > 0 such that J(tv) = maxs≥0 J(sv)} is
well defined on SL⊥ , F (x, t) is regular (cf. [7]) at every t ∈ R for x ∈ Ω and

satisfies that ∂F (x,t)
t is monotone in the sense that for any |t2| > |t1| > 0, any

δ1F (x, t1) ∈ ∂F (x, t1) and δ2F (x, t2) ∈ ∂F (x, t2),

δ2F (x, t2)

t2
>

δ2F (x, t1)

t1
for x ∈ Ω and x �= x1, ..., xk,

where x1, ..., xk ∈ Ω and ∂F (x, t) is generalized gradient of F (x, ·) at t for fixed
x ∈ Ω. Then, the peak mapping

P (v) = {tv|t > 0 such that J(tv) = max
s≥0

J(sv)}

is single-valued for every v ∈ SL⊥ , i.e., for every v ∈ SL⊥ , P (v) = {p(v)}, where
p(v) = tvv for some tv > 0.

Proof. Since F (x, t) is regular at every t ∈ R for x ∈ Ω, we have

∂I(t) = {t−
∫
Ω

δF (x, tv(x))v(x)dx|δF (x, tv(x)) ∈ ∂F (x, s)|s=tv(x)},

where I(t) = J(tv) for every v ∈ SL⊥ . Hence, 0 ∈ ∂I(tv), where tvv ∈ P (v), i.e.,
there is δF (x, tvv(x)) ∈ ∂F (x, s)|s=tvv(x) such that∫

Ω

δF (x, tvv(x))

tvv(x)
v2(x)dx = 1.

By monotonicity of ∂F (x,t)
t , if t0 > tv,∫

Ω

δF (x, t0v(x))

t0v(x)
v2(x)dx >

∫
Ω

δF (x, tvv(x))

tvv(x)
v2(x)dx = 1

and if 0 < t0 < tv,∫
Ω

δF (x, t0v(x))

t0v(x)
v2(x)dx <

∫
Ω

δF (x, tvv(x))

tvv(x)
v2(x)dx = 1.

Thus, such tv > 0 is unique, i.e, the peak mapping P is single-valued for every
v ∈ SL⊥ . �

Remark 4.4. (a) To our numerical example,

(4.5) ∂F (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

{cα|x|r|t|α−2t}, if |t| > 1,
{cβ|x|r|t|β−2t}, if |t| < 1,
[cβ|x|r, cα|x|r], if t = 1,
[−cα|x|r,−cβ|x|r], if t = −1.

Hence, for any |t2| > |t1|, any δ1F (x, t1) ∈ ∂F (x, t1) and δ2F (x, t2) ∈ ∂F (x, t2),

δ2F (x, t2)

t2
>

δ2F (x, t1)

t1
for x ∈ Ω and x �= 0.

(b) Lemma 4.1 and Lemma 4.3 guarantee that

infv∈S
L⊥J(p(v)) ≥ 0,
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where p is the peak selection of J (4.1) w.r.t. L = {0} with p(v) = tv, t > 0 for
v ∈ SL⊥ , under assumptions in Lemma 4.1 and Lemma 4.3. Indeed, if the peak
mapping of J (4.1) w.r.t. a finite dimensional space L ⊂ H1

0 (Ω),

P (v) = {tv + w|t > 0 and w ∈ L such that J(tv + w) = max
s≥0,u∈L

J(sv + u)},

is well defined, then,

infv∈S
L⊥J(p(v)) ≥ 0,

where p is a peak selection of J (4.1) w.r.t. L such that p(v) ∈ P (v) for every
v ∈ SL⊥ , under assumptions in Lemma 4.1 and Lemma 4.3.

Lemma 4.5. Assume that L = {0}, J (4.1) is locally Lipschitz continuous on
H1

0 (Ω), the peak mapping P (v) = {tv|t > 0 such that J(tv) = maxs≥0 J(sv)} is
well defined on SL⊥ , P (v0) = {u0} where v0 ∈ SL⊥ , t = 0 is not a maximum point
of J(tv0) on {t ∈ R|t ≥ 0}, F (x, t) = F1(x)F2(t), 0 ≤ F1(x) ≤ C for every x ∈ Ω
where C > 0 is a constant, F2(t) is regular at every t ∈ R and satisfies that, for
every δF2(t) ∈ ∂F2(t),

δF2(t)t ≥ a1|t|μ + a2,

where μ > 2, μ < 2m
m−2 for m ≥ 3 and a1 > 0, a2 are two constants. Then, any

peak selection p(v) is continuous at v0, where p(v) ∈ P (v) for v ∈ SL⊥ and p(v) is
a global maximum point of J (4.1) on {tv|t ≥ 0} for v ∈ SL⊥ around v0.

Proof. Since F2(t) is regular at every t ∈ R, we have

(4.6) ∂I(t) = {t−
∫
Ω

F1(x)δF2(tv(x))v(x)dx|δF2(tv(x)) ∈ ∂F2(s)|s=tv(x)},

where I(t) = J(tv) for v ∈ SL⊥ . Suppose that vn → v0. Denote that p(vn) = tnvn,
tn > 0 and p(v0) = t0v0, t0 > 0. Then, 0 ∈ ∂In(tn), where In(t) = J(tvn). By
(4.6), there is δF2(tnvn(x)) ∈ ∂F2(s)|s=tnvn(x) such that

tn −
∫
Ω

F1(x)δF2(tnvn(x))vn(x)dx = 0.

Thus,

1 =
1

t2n

∫
Ω

F1(x)δF2(tnvn(x))tnvn(x)dx ≥ 1

t2n

∫
Ω

F1(x)(a1|tnvn(x)|μ + a2)dx,

i.e.,

(4.7) 1 ≥ a1‖p(vn)‖μ−2

∫
Ω

F1(x)|vn(x)|μdx− ‖p(vn)‖−2C|Ω|a2,

where |Ω| is the measure of Ω. Suppose that {tn} is unbounded. Then, there is
{tnk

} such that tnk
→ +∞, i.e., ‖p(vnk

)‖ → +∞. Since vn → v0, this contradicts
(4.7). Hence, {tn} is bounded. Without loss of generality, we can assume that
tn → t̄. Then, since p(vn) is a global maximum point of J (4.1) on {tvn|t ≥ 0}
for large n, t̄v0 is a maximum point of J (4.1) on {tv0|t ≥ 0}. On the other hand,
Since P (v0) = {u0} and t = 0 is not a maximum point of J(tv0) on {t ∈ R|t ≥ 0},
u0 = t0v0 = t̄v0. Hence, t̄ = t0, i.e., p(vn) → p(v0), i.e., p(v) is continuous at
v0. �
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Remark 4.6. (a) For our numerical example, F1(x) = |x|r, r > 0,

F2(t) =

{
|t|α, if |t| > 1,
|t|β , if |t| ≤ 1,

and

∂F2(t) =

⎧⎪⎪⎨
⎪⎪⎩

{cα|t|α−2t}, if |t| > 1,
{cβ|t|β−2t}, if |t| < 1,
[cβ, cα], if t = 1,
[−cα,−cβ], if t = −1.

Thus, for every δF2(t) ∈ ∂F2(t),

δF2(t)t ≥ a1|t|β + a2,

where a1 = cβ and a2 = 0.
(b) For our numerical example, Lemma 4.1, Lemma 4.3 and Lemma 4.5 guar-

antee that the peak selection p(v) = tv, where t > 0 and J(tv) = maxs≥0 J(sv), is
continuous on SL⊥ , where L = {0}.

Lemma 4.5 can be extended to the following theorem and the theorem can be
verified in the same way as Theorem 4.1 in [10]. On the other hand, this theorem
extends Theorem 4.1 in [10].

Theorem 4.7. Assume that L ⊂ H1
0 (Ω) is a finite dimensional space, J (4.1) is

locally Lipschitz continuous on H1
0 (Ω), the peak mapping of J (4.1) w.r.t. L,

P (v) = {tv + w|t > 0 and w ∈ L such that J(tv + w) = max
s≥0,u∈L

J(sv + u)},

is well defined and P (v0) = {u0} where v0 ∈ SL⊥ , (0, w) is not a maximum point of
J(tv0+u) on {t ∈ R|t ≥ 0}×L for any w ∈ L, F (x, t) = F1(x)F2(t), 0 ≤ F1(x) ≤ C
for x ∈ Ω where C > 0 is a constant, F2(t) is regular at every t ∈ R and satisfies
that, for every δF2(t) ∈ ∂F2(t),

δF2(t)t ≥ a1|t|μ + a2, ∀x ∈ Ω,

where μ > 2, μ < 2m
m−2 for m ≥ 3 and a1 > 0, a2 are two constants. Then, any

peak selection p(v) is continuous at v0, where p(v) ∈ P (v) for v ∈ SL⊥ and p(v) is
a global maximum point of J (4.1) on {tv + w|t ≥ 0, w ∈ L} for v ∈ SL⊥ around
v0.

Lemma 4.8. Assume that L = {0}, J (4.1) is locally Lipschitz continuous on
H1

0 (Ω), the peak mapping P (v) = {tv|t > 0 such that J(tv) = maxs≥0 J(sv)} is
well defined on SL⊥ , F (x, t) is regular at every t ∈ R for x ∈ Ω and satisfies that,
for every δF (x, t) ∈ ∂F (x, t) where ∂F (x, t) is generalized gradient of F (x, ·) at t
for fixed x ∈ Ω,

(4.8) δF (x, t)t ≤ at2 +

k∑
i=1

bi|t|ρi , ∀x ∈ Ω,

where 0 ≤ a < λ1, λ1 is the first eigenvalue of Δ on Ω, ρ1, ..., ρk > 2, ρ1, ..., ρk <
2m
m−2 for m ≥ 3 and ρ1, ..., ρk, b1 > 0, ..., bk > 0 are constants. Then, there is α > 0

such that d(p(v), L) ≥ α, where p(v) is a peak selection such that p(v) ∈ P (v) for
v ∈ SL⊥ .
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Proof. Since F (x, t) is regular at every t ∈ R for x ∈ Ω, we have

∂I(t) = {t−
∫
Ω

δF (x, tv(x))v(x)dx|δF (x, tv(x)) ∈ ∂F (x, s)|s=tv(x)},

where I(t) = J(tv) for v ∈ SL⊥ . On the other hand, according to (4.8), we have

∫
Ω

δF (x, u(x))u(x)dx ≤
∫
Ω

(a(u(x))2 +

k∑
i=1

bi|u(x)|ρi)dx

≤ aλ−1
1

∫
Ω

|∇u(x)|2dx+
k∑

i=1

bici(

∫
Ω

|∇u(x)|2dx)
ρi
2

= (aλ−1
1 +

k∑
i=1

bici‖u‖ρi−2)‖u‖2,

where u = tv, δF (x, u(x)) ∈ ∂F (x, s)|s=u(x) and c1, ..., ck are constants. Thus, as
t > 0 is small,

δI(t) ≥ (1− aλ1 +

k∑
i=1

bicit
ρi−2)t > 0

for any δI(t) ∈ ∂I(t). Hence, there is α > 0 such that d(p(v), L) = ‖p(v)‖ ≥ α for
any peak selection p(v) such that p(v) ∈ P (v) for v ∈ SL⊥ . �

Remark 4.9. To our numerical example, ∂F (x, t) is given by (4.5). Hence, for every
δF (x, t) ∈ ∂F (x, t),

δF (x, t)t ≤ at2 + b1|t|β + b2|t|α, ∀x ∈ Ω,

where a = 0, b1 = cβbr, b2 = cαbr and b is a bound of Ω. Hence, to our numerical
example, there is α > 0 such that

d(p(v), L) ≥ α,

where p is the peak selection of J (4.1) w.r.t. L = {0} with p(v) = tv, t > 0 for
v ∈ SL⊥ .

To super-linear property of peak selection to J (4.1) with f(x, t) (4.2), we have
Theorem 4.18. For verifying this theorem, we need Lemma 4.10–Lemma 4.16 to
get Theorem 4.17. Then, Theorem 4.18 can be obtained by Theorem 4.17.

Lemma 4.10. Assume that L = {0}, f(x, t) is in (4.2), p is a peak selection of J
(4.1) defined on SL⊥ , p(w) = tww, tw > 0 for w ∈ SL⊥ , p is continuous at v ∈ SL⊥

and {vn} ⊂ SL⊥ satisfies ‖vn − v‖ ≤ 1, vn → v and

(4.9)
|tn − t|

‖vn − v‖β0
→ +∞,
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where p(vn) = tnvn, tn > 0, p(v) = tv, t > 0 and β0 = 1
2 + α0, α0 ∈ (0, 16 ]. Denote

An
1 = {x ∈ Ω||tv(x)| > 1, |tnvn(x)| > 1},

An
2 = {x ∈ Ω||tv(x)| > 1, |tnvn(x)| = 1}, An

3 = {x ∈ Ω||tv(x)| > 1, |tnvn(x)| < 1},
Bn

1 = {x ∈ Ω||tv(x)| = 1, |tnvn(x)| > 1},
Bn

2 = {x ∈ Ω||tv(x)| = 1, |tnvn(x)| = 1}, Bn
3 = {x ∈ Ω||tv(x)| = 1, |tnvn(x)| < 1},

Cn
1 = {x ∈ Ω||tv(x)| < 1, |tnvn(x)| > 1},

Cn
2 = {x ∈ Ω||tv(x)| < 1, |tnvn(x)| = 1}, Cn

3 = {x ∈ Ω||tv(x)| < 1, |tnvn(x)| < 1}.

Thus,
(a) if An

2 ∪ An
3 ∪ Bn

3 �= ∅ for n = 1, 2, ..., then, either there is {tnk
} such that

t > tnk
or there is {tnk

} and a constant C > 0 such that t < tnk
and∫

Ωnk

|tnk
vnk

(x)|dx ≤ Csβ0
nk
,

where Ωnk
= Ank

2 ∪ Ank
3 ∪Bnk

3 ,
(b) if Bn

2 �= ∅ for n = 1, 2, ..., then, either there is {tnk
} such that t > tnk

or
there is {tnk

} and a constant C > 0 such that t < tnk
and∫

B
nk
2

|tnk
vnk

(x)|dx ≤ Csβ0
nk
,

where vnk
= 1√

1+s2nk

(v − snk
dnk

), ‖dnk
‖ = 1, 〈dnk

, v〉 = 0 and snk
≥ 0.

Proof. (a) Since ‖vn − v‖ ≤ 1 and

‖vn − v‖2 = 〈vn − v, vn − v〉 = ‖vn‖2 + ‖v‖2 − 2〈vn, v〉 = 2− 2〈vn, v〉,

we have 〈vn, v〉 ≥ 1
2 . By Lemma 2.12, there is unique dn with ‖dn‖ = 1, 〈dn, v〉 = 0

and sn ≥ 0 such that

(4.10) vn =
1√

1 + s2n
(v − sndn).

Then,

vn − v = − s2n

(
√
1 + s2n)(1 +

√
1 + s2n)

v − sn√
1 + s2n

dn,

i.e.,

‖vn − v‖ =
sn√
1 + s2n

√
s2n

(1 +
√
1 + s2n)

2
+ 1.

Thus,

lim
n→∞

‖vn − v‖
sn

= 1.

Hence, by (4.9),

(4.11) Dn =
|tn − t|
sβ0
n

→ +∞.
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By (4.10), we have

tnvn

=
1√

1 + s2n
(tnv − tndnsn) = (tnv − tndnsn) + (

1√
1 + s2n

− 1)(tnv − tndnsn)

= tv − (t− tn)v − tndnsn − (tnv − tndnsn)s
2
n

f(sn)
,

i.e.,

(4.12) tnvn = tv − (t− tn)v − tndnsn − tnvs
2
n

f(sn)
+

tndns
3
n

f(sn)
,

where f(sn) =
√
1 + s2n(1 +

√
1 + s2n).

For every x ∈ An
2 ∪ An

3 , we have either tv(x) > 1, |tnvn(x)| ≤ 1 or tv(x) < −1,
|tnvn(x)| ≤ 1. If tv(x) > 1, |tnvn(x)| ≤ 1 and t < tn, then, by (4.11) and (4.12),
there is n1 > 0 such that n1 is independent of x and as n > n1,

−1

2
(t− tn)v(x)− 2tn|dn(x)|sn

≤ −(t− tn)v(x)− tndn(x)sn − tnv(x)s
2
n

f(sn)
− tn|dn(x)|sn

≤ −(t− tn)v(x)− tndn(x)sn − tnv(x)s
2
n

f(sn)
+

tndn(x)s
3
n

f(sn)

= tnvn(x)− tv(x) < 0,

i.e.,

|tn − t||v(x)| < 4tn|dn(x)|sn.
If tv(x) < −1, |tnvn(x)| ≤ 1 and t < tn, then, by (4.11) and (4.12), there is n2 > 0
such that n2 is independent of x and as n > n2,

−1

2
(t− tn)v(x) + 2tn|dn(x)|sn

> −1

2
(t− tn)v(x)− tndn(x)sn +

tndn(x)s
3
n

f(sn)

> −(t− tn)v(x)− tndn(x)sn − tnv(x)s
2
n

f(sn)
+

tndn(x)s
3
n

f(sn)

= tnvn(x)− tv(x) > 0,

i.e.,

|tn − t||v(x)| < 4tn|dn(x)|sn.
Thus, ∀x ∈ An

2 ∪ An
3 , if t < tn and n > max(n1, n2), we have

|tn − t||v(x)| < 4tn|dn(x)|sn.

Similarly, ∀x ∈ Bn
3 , if t < tn, there is n3 > 0 such that n3 is independent of x and

as n > n3, we have

|tn − t||v(x)| < 4tn|dn(x)|sn.
Hence, ∀x ∈ An

2 ∪ An
3 ∪Bn

3 , if t < tn and n > max(n1, n2, n3), we have

(4.13) |tn − t||v(x)| < 4tn|dn(x)|sn.
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The inequality (4.13) means, if t < tn and n is large,

(4.14) |tn − t|
∫
Ωn

|v(x)|dx < 4tnsn

∫
Ωn

|dn(x)|dx,

where Ωn = An
2 ∪ An

3 ∪Bn
3 . By (4.14), if t < tn and n is large,

|tn − t|
sβ0
n

< 4s−2α0
n tn

∫
Ωn

|dn(x)|dx(
∫
Ωn

|v(x)|dx
sβ0
n

)−1

≤ 4s−2α0
n tn(

∫
Ωn

|dn(x)|2dx)
1
2 (

∫
Ωn

12dx)
1
2 (

∫
Ωn

|v(x)|dx
sβ0
n

)−1

≤ 4s−2α0
n tnt(

∫
Ωn

|dn(x)|2dx)
1
2 |Ωn|

1
2 (

∫
Ωn

|tv(x)|dx
sβ0
n

)−1

≤ 4s−2α0
n tntλ

−1
1 |Ωn|

1
2 (

∫
Ωn

|tv(x)|dx
sβ0
n

)−1,

where λ1 is the first eigenvalue of Δ on Ω and |Ωn| is the measure of Ωn, and by
(4.11) and (4.14), if t < tn and n is large,

|Ωn| =

∫
Ωn

dx ≤
∫
Ωn

|tv(x)|dx < 4tnt
sβ0
n

|tn − t|s
1−β0
n

∫
Ωn

|dn(x)|dx

= 4s
1
2−α0
n tntD

−1
n

∫
Ωn

|dn(x)|dx ≤ 4s
1
2−α0
n tntD

−1
n λ−1

1 |Ωn|
1
2 ,

i.e.,

|Ωn| ≤ s1−2α0
n .

Then, if t < tn and n is large,

|tn − t|
sβ0
n

≤ 4s
1
2−3α0
n tntλ

−1
1 (

∫
Ωn

|tv(x)|dx
sβ0
n

)−1,

i.e., ∫
Ωn

|tv(x)|dx
sβ0
n

≤ 4s
1
2−3α0
n tntλ

−1
1 (

|tn − t|
sβ0
n

)−1 = 4s
1
2−3α0
n tntλ

−1
1 D−1

n .

Thus, since α0 ∈ (0, 16 ], by (4.11), if t < tn and n is large,

(4.15)

∫
Ωn

|tv(x)|dx ≤ Dsβ0
n ,

where D is a constant. By (4.10) and (4.15), if t < tn and n is large, then∫
Ωn

|tnvn(x)|dx =
tn√
1 + s2n

∫
Ωn

|
√
1 + s2nvn(x)|dx

≤ tn√
1 + s2n

(

∫
Ωn

|
√
1 + s2nvn(x) + sndn(x)|dx+

∫
Ωn

|sndn(x)|dx)

≤ tn√
1 + s2n

(t−1

∫
Ωn

|tv(x)|dx+ sn|Ωn|
1
2 (

∫
Ωn

|dn(x)|2dx)
1
2 )

≤ tn√
1 + s2n

(t−1Dsβ0
n + sn|Ωn|

1
2λ−1

1 ) ≤ Csβ0
n ,
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where C > 0 is a constant. Hence, either there is {tnk
} such that t > tnk

or there
is {tnk

} and a constant C > 0 such that t < tnk
and∫

Ωnk

|tnk
vnk

(x)|dx ≤ Csβ0
nk
,

where Ωnk
= Ank

2 ∪ Ank
3 ∪Bnk

3 .

(b) The conclusion can be verified in the same way as (a). �

Lemma 4.11. Assume that L = {0}, f(x, t) is in (4.2), p is a peak selection of J
(4.1) defined on SL⊥ , p(w) = tww, tw > 0 for w ∈ SL⊥ , p is continuous at v ∈ SL⊥

and {vn} ⊂ SL⊥ satisfies ‖vn − v‖ ≤ 1, vn → v and

|tn − t|
‖vn − v‖β0

→ +∞,

where p(vn) = tnvn, tn > 0, p(v) = tv, t > 0 and β0 = 1
2 + α0, α0 ∈ (0, 16 ].

An
i , B

n
i , C

n
i , i = 1, 2, 3, are defined in Lemma 4.10. Thus,

(a) if Cn
1 ∪ Cn

2 ∪ Bn
1 �= ∅ for n = 1, 2, ..., then, either there is {tnk

} such that
t < tnk

or there is {tnk
} and a constant C > 0 such that t > tnk

and∫
Ωnk

|tv(x)|dx ≤ Csβ0
nk
,

where Ωnk
= Cnk

1 ∪ Cnk
2 ∪Bnk

1 ,
(b) if Bn

2 �= ∅ for n = 1, 2, ..., then, either there is {tnk
} such that t < tnk

or
there is {tnk

} and a constant C > 0 such that t > tnk
and∫

B
nk
2

|tv(x)|dx ≤ Csβ0
nk
,

where vnk
= 1√

1+s2nk

(v − snk
dnk

), ‖dnk
‖ = 1, 〈dnk

, v〉 = 0 and snk
≥ 0.

Proof. (a) Similar to Lemma 4.10, there is unique dn with ‖dn‖ = 1, 〈dn, v〉 = 0
and sn ≥ 0 such that

(4.16) vn =
1√

1 + s2n
(v − sndn)

and

(4.17) Dn =
|tn − t|
sβ0
n

→ +∞.

By (4.16),

v =
√
1 + s2nvn + sndn.

Then,

tv =
√
1 + s2ntvn + tdnsn = (tvn + tdnsn) + (

√
1 + s2n − 1)tvn,

i.e.,

(4.18) tv = tnvn + (t− tn)vn + tdnsn +
tvns

2
n

1 +
√
1 + s2n

.
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For every x ∈ Cn
1 ∪ Cn

2 , we have either |tv(x)| < 1, tnvn(x) ≥ 1 or |tv(x)| < 1,
tnvn(x) ≤ −1. If |tv(x)| < 1, tnvn(x) ≥ 1 and t > tn, then, by (4.17) and (4.18),
there is n1 > 0 such that n1 is independent of x and as n > n1,

(t− tn)vn(x) + tdn(x)sn ≤ (t− tn)vn(x) + tdn(x)sn +
tvn(x)s

2
n

1 +
√
1 + s2n

= tv(x)− tnvn(x) < 0,

i.e.,

|tn − t||vn(x)| < t|dn(x)|sn.
If |tv(x)| < 1, tnvn(x) < −1 and t > tn, then, (4.17) and (4.18), there is n2 > 0
such that n2 is independent of x and as n > n2,

1

2
(t− tn)vn(x) + tdn(x)sn ≥ (t− tn)vn(x) + tdn(x)sn +

tvn(x)s
2
n

1 +
√
1 + s2n

= tv(x)− tnvn(x) > 0,

i.e.,

|tn − t||vn(x)| < 2t|dn(x)|sn.
Thus, ∀x ∈ Cn

1 ∪ Cn
2 , if t > tn and n > max(n1, n2), we have

|tn − t||vn(x)| < 2t|dn(x)|sn.
Similarly, ∀x ∈ Bn

1 , if t > tn, there is n3 > 0 such that n3 is independent of x and
as n > n3, we have

|tn − t||vn(x)| < 2t|dn(x)|sn.
Hence, ∀x ∈ Cn

1 ∪ Cn
2 ∪Bn

1 , if t > tn and n > max(n1, n2, n3), we have

(4.19) |tn − t||vn(x)| < 2t|dn(x)|sn.
The inequality means, if t > tn and n is large, then

(4.20) |tn − t|
∫
Ωn

|vn(x)|dx < 2tsn

∫
Ωn

|dn(x)|dx,

where Ωn = Cn
1 ∪ Cn

2 ∪Bn
1 . By (4.20), if t > tn and n is large,

|tn − t|
sβ0
n

< 2s−2α0
n t

∫
Ωn

|dn(x)|dx(
∫
Ωn

|vn(x)|dx
sβ0
n

)−1

≤ 2s−2α0
n t(

∫
Ωn

|dn(x)|2dx)
1
2 (

∫
Ωn

12dx)
1
2 (

∫
Ωn

|vn(x)|dx
sβ0
n

)−1

≤ 2s−2α0
n tnt(

∫
Ωn

|dn(x)|2dx)
1
2 |Ωn|

1
2 (

∫
Ωn

|tnvn(x)|dx
sβ0
n

)−1

≤ 2s−2α0
n tntλ

−1
1 |Ωn|

1
2 (

∫
Ωn

|tnvn(x)|dx
sβ0
n

)−1,

where λ1 is the first eigenvalue of Δ on Ω and |Ωn| is the measure of Ωn, and by
(4.17) and (4.20),

|Ωn| =

∫
Ωn

dx ≤
∫
Ωn

|tnvn(x)|dx < 2tnt
sβ0
n

|tn − t|s
1−β0
n

∫
Ωn

|dn(x)|dx

= 2s
1
2−α0
n tntD

−1
n

∫
Ωn

|dn(x)|dx ≤ 2s
1
2−α0
n tntD

−1
n λ−1

1 |Ωn|
1
2 ,
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i.e.,

|Ωn| ≤ s1−2α0
n .

Then,

|tn − t|
sβ0
n

≤ 2s
1
2−3α0
n tnt(

∫
Ωn

|tnvn(x)|dx
sβ0
n

)−1,

i.e., ∫
Ωn

|tnvn(x)|dx
sβ0
n

≤ 2s
1
2−3α0
n tnt(

|tn − t|
sβ0
n

)−1 = 2s
1
2−3α0
n tntD

−1
n .

Thus, since α0 ∈ (0, 16 ], by (4.17), if t > tn and n is large, then

(4.21)

∫
Ωn

|tnvn(x)|dx ≤ Dsβ0
n ,

where D > 0 is a constant. By (4.16) and (4.21), if t > tn and n is large, then∫
Ωn

|tv(x)|dx ≤
∫
Ωn

|t(v(x)− sndn(x))|dx+

∫
Ωn

|tsndn(x)|dx

≤ tt−1
n

√
1 + s2n

∫
Ωn

|tnvn(x)|dx+ t|Ωn|sn(
∫
Ωn

|dn(x)|2dx)
1
2

≤ tt−1
n D

√
1 + s2ns

β0
n + t|Ωn|sn ≤ Csβ0

n ,

where |Ωn| is the measure of Ωn and C > 0 is a constant. Hence, either there is
{tnk

} such that t < tnk
or there is {tnk

} and a constant C > 0 such that t > tnk

and ∫
Ωnk

|tv(x)|dx ≤ Csβ0
nk
,

where Ωnk
= Cnk

1 ∪ Cnk
2 ∪Bnk

1 .
(b) The conclusion can be proved in the same way as (a). �

Lemma 4.12. Assume that L = {0}, f(x, t) is in (4.2), p is a peak selection of J
(4.1) defined on SL⊥ , p(w) = tww, tw > 0 for w ∈ SL⊥ , p is continuous at v ∈ SL⊥

and {vn} ⊂ SL⊥ satisfies ‖vn − v‖ ≤ 1, vn → v. Denote p(vn) = tnvn, tn > 0 and
p(v) = tv, t > 0. An

i , B
n
i , C

n
i , i = 1, 2, 3, are defined in Lemma 4.10. Then,

(a)

Gn
0 +Gn

1 +Gn
2 +Gn

3 = An,

where

An = A+
n +A0

n +A−
n

with

A+
n = cαtαn

∫
Ω+

n

|x|rUn(α)(x)dx, A0
n = c(β + kn)t

β
n

∫
Ω0

n

|x|rUn(β)(x)dx,

A−
n = cβtβn

∫
Ω−

n

|x|rUn(β)(x)dx, Un(γ) = |vn|γ − |v|γ for γ > 0,

and

Ω+
n = An

1 ∪Bn
1 ∪ Cn

1 , Ω0
n = An

2 ∪Bn
2 ∪ Cn

2 , Ω−
n = An

3 ∪Bn
3 ∪ Cn

3 ,

kn ∈ [0, α− β],

Gn
0 = Gn+

0 +Gn0

0 +Gn−

0 − fn(2)
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with

Gn+

0 = cfn(α)

∫
Ω+

n

α|x|r|v(x)|αdx, Gn0

0 = cfn(β)

∫
Ω0

n

(β + kn)|x|r|v(x)|βdx

and

Gn−

0 = cfn(β)

∫
Ω−

n

β|x|r|v(x)|βdx, fn(γ) = tγ − tγn for γ > 0,

Gn
1 = In1 + In2 + In3

with

In1 = cα

∫
An

2

|x|r|tv(x)|αdx− c(β + kn)

∫
An

2

|x|r|tv(x)|βdx ≥ 0,

In2 = cα

∫
An

3

|x|r|tv(x)|αdx− cβ

∫
An

3

|x|r|tv(x)|βdx ≥ 0,

and

In3 = ck

∫
Bn

3

|x|r|tv(x)|βdx ≥ 0,

k ∈ [0, α− β],
Gn

2 = Jn
1 + Jn

2 + Jn
3

with

Jn
1 = cβ

∫
Cn

1

|x|r|tv(x)|βdx− cα

∫
Cn

1

|x|r|tv(x)|αdx,

Jn
2 = −ckn

∫
Cn

2

|tv(x)|βdx,

and

Jn
3 = c(β + k)

∫
Bn

1

|x|r|tv(x)|βdx− cα

∫
Bn

1

|x|r|tv(x)|αdx,

and

Gn
3 = c(k − kn)

∫
Bn

2

|x|r|tv(x)|βdx,

(b) there is a constant D > 0 such that, for every Ω̄ ⊆ Ω ⊂ R
m, γ > 1 for

m = 1, 2 and 1 < γ ≤ 2m
m−2 for m ≥ 3,

(4.22) |
∫
Ω̄

|x|rUn(γ)(x)dx| ≤ Dsn,

as n is large and there is a constant D̄ > 0 such that

|An| ≤ D̄sn,

where vn = 1√
1+s2n

(v − sndn), ‖dn‖ = 1, 〈dn, v〉 = 0 and sn ≥ 0.

Proof. (a) Since p(vn) = tnvn, tn > 0 and p(v) = tv, t > 0, there are k, kn ∈
[0, α− β] such that

t2 − c

∫
Ω+

αf(x)dx− c

∫
Ω0

(β + k)g(x)dx− c

∫
Ω−

βg(x)dx = 0,

where f(x) = |x|r|tv(x)|α, g(x) = |x|r|tv(x)|β, Ω+ = {x ∈ Ω||tv(x)| > 1}, Ω0 =
{x ∈ Ω||tv(x)| = 1} and Ω− = {x ∈ Ω||tv(x)| < 1}, and

t2n − c

∫
Ω+

n

αfn(x)dx− c

∫
Ω0

n

(β + kn)gn(x)dx− c

∫
Ω−

n

βgn(x)dx = 0,
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where fn(x) = |x|r|tnvn(x)|α and gn(x) = |x|r|tnvn(x)|β, i.e.,

t2n − c

∫
Ω+

n

αf̄n(x)dx− c

∫
Ω0

n

(β + kn)ḡn(x)dx− c

∫
Ω−

n

βḡn(x)dx = An,

where f̄n(x) = |x|r|tnv(x)|α and ḡn(x) = |x|r|tnv(x)|β.
By the first and third equality, after simple calculation, we can find that the

conclusion is correct.
(b) Indeed, as n is large,

|
∫
Ω̄

|x|rUn(γ)(x)dx| = |
∫
Ω̄

|x|r|vn(x)|γdx−
∫
Ω̄

|x|r|v(x)|γdx|

= γ(φ(vn, v, η))
γ−1|(

∫
Ω̄

|x|r|vn(x)|γdx)
1
γ − (

∫
Ω̄

|x|r|v(x)|γdx) 1
γ |

≤ γ(φ(vn, v, η))
γ−1(

∫
Ω̄

|x|r|vn(x)− v(x)|γdx) 1
γ

≤ 2γ−1γ(

∫
Ω̄

|x|r|v(x)|γdx)
γ−1
γ (

∫
Ω̄

|x|r|vn(x)− v(x)|γdx) 1
γ

≤ 2γ−1γ(

∫
Ω

|x|r|v(x)|γdx)
γ−1
γ (

∫
Ω

|x|r|vn(x)− v(x)|γdx) 1
γ

≤ 2γ−1Mγ(

∫
Ω

|v(x)|γdx)
γ−1
γ (

∫
Ω

|vn(x)− v(x)|γdx) 1
γ

≤ 2γ−1CγMγ‖v‖γ−1‖vn − v‖ ≤ (2C)γMγ‖v‖γ−1 sn√
1 + s2n

‖dn‖

= (2C)γMγ‖v‖γ−1 sn√
1 + s2n

,

where φ(vn, v, η) = η(
∫
Ω̄
|x|r|vn(x)|γdx)

1
γ + (1− η)(

∫
Ω̄
|x|r|v(x)|γdx) 1

γ , η ∈ [0, 1],

M = supx∈Ω|x|r,

and C > 0 is a constant, i.e.,

|
∫
Ω̄

|x|rUn(γ)(x)dx| ≤ Dsn,

where D > 0 is a constant. Hence, as n is large,

|An| ≤ |A+
n |+ |A0

n|+ |A−
n | ≤ c(αtα1

n + (β + kn)t
β
n + βtβn)Dsn,

i.e., there is a constant D̄ > 0 such that |An| ≤ D̄sn. �

Lemma 4.13. Assume that L = {0}, f(x, t) is in (4.2), p is a peak selection of J
(4.1) defined on SL⊥ , p(w) = tww, tw > 0 for w ∈ SL⊥ , p is continuous at v ∈ SL⊥

and {vn} ⊂ SL⊥ satisfies ‖vn − v‖ ≤ 1, vn → v. Denote p(vn) = tnvn, tn > 0 and
p(v) = tv, t > 0. An

i , B
n
i , C

n
i , i = 1, 2, 3, are defined in Lemma 4.10. Then,

(a)

Hn
0 +Hn

1 +Hn
2 +Hn

3 = −Bn,

where

Bn = B+
n +B0

n +B−
n
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with

B+
n = cαtα

∫
Ω+

|x|rUn(α)(x)dx, B0
n = c(β + k)tβ

∫
Ω0

|x|rUn(β)(x)dx,

B−
n = cβtβ

∫
Ω−

|x|rUn(β)(x)dx, Un(γ) = |vn|γ − |v|γ for γ > 0,

and

Ω+ = An
1 ∪ An

2 ∪ An
3 , Ω0 = Bn

1 ∪Bn
2 ∪Bn

3 , Ω− = Cn
1 ∪ Cn

2 ∪ Cn
3 ,

k ∈ [0, α− β],

Hn
0 = Hn+

0 +Hn0

0 +Hn−

0 − fn(2)

with

Hn+

0 = cfn(α)

∫
Ω+

α|x|r|vn(x)|αdx, Hn0

0 = cfn(β)

∫
Ω0

(β + k)|x|r|vn(x)|βdx,

and

Hn−

0 = cfn(β)

∫
Ω−

β|x|r|vn(x)|βdx, fn(γ) = tγn − tγ for γ > 0,

Hn
1 = In1 + In2 + In3

with

In1 = cα

∫
Cn

1

|x|r|tnvn(x)|αdx− cβ

∫
Cn

1

|x|r|tnvn(x)|βdx ≥ 0,

In2 = ckn

∫
Cn

2

|x|r|tnvn(x)|βdx ≥ 0,

and

In3 = cα

∫
Bn

1

|x|r|tnvn(x)|αdx− c(β + k)

∫
Bn

1

|x|r|tnvn(x)|βdx ≥ 0,

kn ∈ [0, α− β],

Hn
2 = Jn

1 + Jn
2 + Jn

3

with

Jn
1 = cβ

∫
An

3

|x|r|tnvn(x)|βdx− cα

∫
An

3

|x|r|tnvn(x)|αdx,

Jn
2 = −ck

∫
Bn

3

|x|r|tnvn(x)|βdx,

and

Jn
3 = c(β + kn)

∫
An

2

|x|r|tnvn(x)|βdx− cα

∫
An

2

|x|r|tnvn(x)|αdx,

and

Hn
3 = c(kn − k)

∫
Bn

2

|x|r|tnvn(x)|βdx,

(b) there is a constant D̄ > 0 such that

|Bn| ≤ D̄sn,

where vn = 1√
1+s2n

(v − sndn), ‖dn‖ = 1, 〈dn, v〉 = 0 and sn > 0.



A MINIMAX METHOD FOR FINDING NONSMOOTH SADDLE POINTS 2121

Proof. (a) Since p(vn) = tnvn, tn > 0 and p(v) = tv, t > 0, there are k, kn ∈
[0, α− β] such that

t2 − c

∫
Ω+

αf(x)dx− c

∫
Ω0

(β + k)g(x)dx− c

∫
Ω−

βg(x)dx = 0,

where f(x) = |x|r|tv(x)|α and g(x) = |x|r|tv(x)|β, i.e.,

t2 − c

∫
Ω+

αf̄n(x)dx− c

∫
Ω0

(β + k)ḡn(x)dx− c

∫
Ω−

βḡn(x)dx = −Bn,

where f̄n(x) = |x|r|tvn(x)|α and ḡn(x) = |x|r|tvn(x)|β, and

t2n − c

∫
Ω+

n

αfn(x)dx− c

∫
Ω0

n

(β + kn)gn(x)dx− c

∫
Ω−

n

βgn(x)dx = 0,

where fn(x) = |x|r|tnvn(x)|α, gn(x) = |x|r|tnvn(x)|β, Ω+
n = An

1 ∪ Bn
1 ∪ Cn

1 , Ω
0
n =

An
2 ∪Bn

2 ∪ Cn
2 and Ω−

n = An
3 ∪Bn

3 ∪ Cn
3 .

By the second and third equality, after simple computation, we should know that
the conclusion is true.

(b) By (4.22), as n is large,

|Bn| ≤ |B+
n |+ |B0

n|+ |B−
n | ≤ c(αtα1 + (β + k)tα2 + βtβ)Dsn,

i.e., there is a constant D̄ > 0 such that |Bn| ≤ D̄sn. �

Lemma 4.14. Assume that L = {0}, f(x, t) is in (4.2), p is a peak selection of J
(4.1) defined on SL⊥ , p(w) = tww, tw > 0 for w ∈ SL⊥ , p is continuous at v ∈ SL⊥

and {vn} ⊂ SL⊥ satisfies ‖vn − v‖ ≤ 1, vn → v. Denote p(vn) = tnvn, tn > 0,
p(v) = tv, t > 0 and β0 = 1

2 + α0, α0 ∈ (0, 16 ]. An
i , B

n
i , C

n
i , i = 1, 2, 3, are defined

in Lemma 4.10. If An
2 ∪ An

3 ∪ Bn
3 �= ∅ and t > tn for n = 1, 2, ..., then, there is a

constant Lh > 0 such that

|tn − t| ≤ Lh‖vn − v‖β0 .

Proof. Suppose that there is not a constant Lh > 0 such that

|tn − t| ≤ Lh‖vn − v‖β0 .

Then, there is {vnl
} such that

lim
l→∞

|tnl
− t|

‖vnl
− v‖β0

= +∞.

Thus, similar to Lemma 4.10,

(4.23)
|tnl

− t|
sβ0
nl

→ +∞,

where vnl
= 1√

1+s2nl

(v − snl
dnl

), ‖dnl
‖ = 1, 〈dnl

, v〉 = 0 and snl
≥ 0.

First, by Lemma 4.11, there are following four cases. In these four cases, {nl′}
represents a subsequence of {nl}.

The first case is there are {Cnl′
1 ∪C

nl′
2 ∪B

nl′
1 } and {Bnl′

2 } such that C
nl′
1 ∪C

nl′
2 ∪

B
nl′
1 �= ∅, Bnl′

2 �= ∅,

(4.24)

∫
C

n
l′

1 ∪C
n
l′

2 ∪B
n
l′

1

|tv(x)|dx ≤ Dsβ0
nl′

and

∫
B

n
l′

2

|tv(x)|dx ≤ Dsβ0
nl′

,

where D > 0 is a constant.
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The second case is there are {Cnl′
1 ∪ C

nl′
2 ∪ B

nl′
1 } and {Bnl′

2 } such that C
nl′
1 ∪

C
nl′
2 ∪B

nl′
1 �= ∅, Bnl′

2 = ∅ and∫
C

n
l′

1 ∪C
n
l′

2 ∪B
n
l′

1

|tv(x)|dx ≤ Dsβ0
nl′

,

where D > 0 is a constant.
The third case is there are {Cnl′

1 ∪ C
nl′
2 ∪ B

nl′
1 } and {Bnl′

2 } such that C
nl′
1 ∪

C
nl′
2 ∪B

nl′
1 = ∅, Bnl′

2 �= ∅ and∫
B

n
l′

2

|tv(x)|dx ≤ Dsβ0
nl′

,

where D > 0 is a constant.
The fourth case is there are {Cnl′

1 ∪ C
nl′
2 ∪ B

nl′
1 } and {Bnl′

2 } such that C
nl′
1 ∪

C
nl′
2 ∪B

nl′
1 = ∅ and B

nl′
2 = ∅.

We only discuss the first case and the remaining three cases can be handled in a
similar way. By (4.24),

|Jnl′
1 | = |cβ

∫
C

n
l′

1

|x|r|tv(x)|βdx− cα

∫
C

n
l′

1

|x|r|tv(x)|αdx|

≤ cβM

∫
C

n
l′

1

|tv(x)|dx+ cαM

∫
C

n
l′

1

|tv(x)|dx ≤ c(β + α)MDsβ0
nl′

,

|Jnl′
2 | = | − cknl′

∫
C

n
l′

2

|x|r|tv(x)|βdx| ≤ cknl′M

∫
C

n
l′

2

|tv(x)|dx ≤ cknl′MDsβ0
nl′

,

and

|Jnl′
3 | = |c(β + k)

∫
B

n
l′

1

|x|r|tv(x)|βdx− cα

∫
B

n
l′

1

|x|r|tv(x)|αdx|

≤ c(β + k)M

∫
B

n
l′

1

|tv(x)|dx+ cαM

∫
B

n
l′

1

|tv(x)|dx ≤ c(β + α+ k)MDsβ0
nl′

,

where M = supx∈Ω|x|r. These three inequalities mean that

(4.25) |Gnl′
2 | ≤ |Jnl′

1 |+ |Jnl′
2 |+ |Jnl′

3 | ≤ c(2α+ 2β + knl′ + k)MDsβ0
nl′

.

By (4.24),

|Gnl′
3 | = |c(k − knl′ )

∫
B

n
l′

2

|x|r|tv(x)|βdx| ≤ c|k − knl′ |M
∫
B

n
l′

2

|tv(x)|dx,

i.e.,

(4.26) |Gnl′
3 | ≤ c|k − knl′ |MDsβ0

nl′
.

Then, by (4.25), (4.26) and Lemma 4.12,

G
nl′
0 ≤ G

nl′
0 +G

nl′
1 = Anl′ −G

nl′
2 −G

nl′
3 ≤ |Anl′ |+ |Gnl′

2 |+ |Gnl′
3 |

≤ D̄snl′ + c(2α+ 2β + knl′ + k)MDsβ0
nl′

+ c|k − knl′ |MDsβ0
nl′

≤ C̄sβ0
nl′

,

where C̄, D̄ > 0 are two constants, i.e.,

(4.27) t− tnl′ ≤
C̄

Gnl′
sβ0
nl′

,
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where Gnl′ = G+
nl′

+G0
nl′

+G−
nl′

− (t+ tnl′ ) with

G+
nl′

= cα(η1t+ (1− η1)tnl′ )
α−1

∫
Ω+

n
l′

α|x|r|v(x)|αdx,

G0
nl′

= cβ(η2t+ (1− η2)tnl′ )
β−1

∫
Ω0

n
l′

(β + knl′ )|x|
r|v(x)|βdx,

and

G−
nl′

= cβ(η2t+ (1− η2)tnl′ )
β−1

∫
Ω−

n
l′

β|x|r|v(x)|βdx,

η1, η2 ∈ [0, 1]. On the other hand, in the verification of Lemma 4.12, we have

(4.28) |
∫
Ω̄

|x|rUn(γ)(x)dx| ≤ 2γ−1CγMγ‖v‖γ−1‖vn − v‖

for Ω̄ ⊆ Ω, γ > 1 for m = 1, 2 and 1 < γ ≤ 2m
m−2 for m ≥ 3, as n is large, where

Un(γ) = |vn|γ −|v|γ and C > 0 is a constant. Since vnl′ → v, (4.28) means, ∀ε > 0,

|
∫
Ω̂

|x|r|vnl′ (x)|
γdx−

∫
Ω̂

|x|r|v(x)|γdx| ≤ ε,

for (γ, Ω̂) = (α,Ω+
nl′

), (β,Ω0
nl′

), (β,Ω−
nl′

), as nl′ is large. By this inequality, ∀ζ > 0,

(4.29) |Gnl′ − Ḡnl′ | ≤ ζ,

as nl′ is large, where Ḡnl′ = Ḡ+
nl′

+ Ḡ0
nl′

+ Ḡ−
nl′

− (t+ tnl′ ) with

Ḡ+
nl′

= cα(η1t+ (1− η1)tnl′ )
α−1

∫
Ω+

nl′

α|x|r|vnl′ (x)|
αdx,

Ḡ0
nl′

= cβ(η2t+ (1− η2)tnl′ )
β−1

∫
Ω0

n
l′

(β + knl′ )|x|
r|vnl′ (x)|

βdx,

and

Ḡ−
nl′

= cβ(η2t+ (1− η2)tnl′ )
β−1

∫
Ω−

n
l′

β|x|r|vnl′ (x)|
βdx.

Since p(vn) = tnvn, tn > 0, we have

t2n − c

∫
Ω+

n

αfn(x)dx− c

∫
Ω0

n

(β + kn)gn(x)dx− c

∫
Ω−

n

βgn(x)dx = 0,

where fn(x) = |x|r|tnvn(x)|α and gn(x) = |x|r|tnvn(x)|β. Thus, for large nl′ ,

(4.30) Ḡnl′ ≥ (β − β − 2

4
)tnl′ − (2 +

β − 2

4
)tnl′ =

β − 2

2
tnl′ ≥

β − 2

4
t.

By (4.29) and (4.30), if we set ζ = β−2
8 t, then, for large nl′ ,

(4.31) Gnl′ >
β − 2

8
t.

By (4.27) and (4.31), for large nl′ ,

|tnl′ − t|
sβ0
nl′

=
t− tnl′

sβ0
nl′

<
8C̄

(β − 2)t
.

This is a contradiction to (4.23). Hence, the conclusion is true. �
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Lemma 4.15. Assume that L = {0}, f(x, t) is in (4.2), p is a peak selection of J
(4.1) defined on SL⊥ , p(w) = tww, tw > 0 for w ∈ SL⊥ , p is continuous at v ∈ SL⊥

and {vn} ⊂ SL⊥ satisfies ‖vn − v‖ ≤ 1, vn → v. Denote p(vn) = tnvn, tn > 0,
p(v) = tv, t > 0 and β0 = 1

2 + α0, α0 ∈ (0, 16 ]. An
i , B

n
i , C

n
i , i = 1, 2, 3, are defined

in Lemma 4.10. If An
2 ∪An

3 ∪Bn
3 �= ∅, t < tn and

(4.32)

∫
Ωn

|tnvn(x)|dx ≤ Dsβ0
n

for n = 1, 2, ..., where Ωn = An
2 ∪ An

3 ∪ Bn
3 , vn = 1√

1+s2n
(v − sndn), ‖dn‖ = 1,

〈dn, v〉 = 0, sn ≥ 0 and D > 0 is a constant, then, there is a constant Lh > 0 such
that

|tn − t| ≤ Lh‖vn − v‖β0 .

Proof. Suppose that there is not a constant Lh > 0 such that

|tn − t| ≤ Lh‖vn − v‖β0 .

Then, similar to Lemma 4.14, there is {tnl
} such that

(4.33)
|tnl

− t|
sβ0
nl

→ +∞.

By Lemma 4.10, there are the following two cases. In these two cases, {nl′}
represents a subsequence of {nl}.

The first case is there is {Bnl′
2 } such that B

nl′
2 �= ∅,

(4.34)

∫
B

n
l′

2

|tnl′ vnl′ (x)|dx ≤ D̂sβ0
nl′

,

where D̂ > 0 is a constant.
The second case is there is {Bnl′

2 } such that B
nl′
2 = ∅.

We only work on the first case and the second case can be discussed in a similar
way.

By (4.32),

|Jnl′
1 | = |cβ

∫
A

n
l′

3

|x|r|tnl′ vnl′ (x)|
βdx− cα

∫
A

n
l′

3

|x|r|tnl′ vnl′ (x)|
αdx|

≤ cβM

∫
A

n
l′

3

|tnl′ vnl′ (x)|dx+ cαM

∫
A

n
l′

3

|tnl′ vnl′ (x)|dx ≤ c(β + α)MDsβ0
nl′

,

|Jnl′
2 | = |ck

∫
B

n
l′

3

|x|r|tnl′ vnl′ (x)|
βdx| ≤ ckM

∫
B

n
l′

3

|tnl′ vnl′ (x)|dx ≤ ckMDsβ0
nl′

,

and

|Jnl′
3 | = |c(β + knl′ )

∫
A

n
l′

2

|x|r|tnl′ vnl′ (x)|
βdx− cα

∫
A

n
l′

2

|x|r|tnl′ vnl′ (x)|
αdx|

≤ c(β + knl′ )M

∫
A

n
l′

2

|tnl′ vnl′ (x)|dx+ cαM

∫
A

n
l′

2

|tnl′ vnl′ (x)|dx

≤ c(β + α+ knl′ )MDsβ0
nl′

,

where M = supx∈Ω|x|r. These three inequalities mean that

(4.35) |Hnl′
2 | ≤ |Jnl′

1 |+ |Jnl′
2 |+ |Jnl′

2 | ≤ c(2β + 2α+ knl′ + k)MDsβ0
nl′

.
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By (4.34),

|Hnl′
3 | = |c(knl′ − k)

∫
B

n
l′

2

|x|r|tnl′ vnl′ (x)|
βdx| ≤ c|knl′ − k|M

∫
B

n
l′

2

|tnl′ vnl′ (x)|dx,

i.e.,

(4.36) |Hnl′
3 | ≤ c|k − knl′ |MD̂sβ0

nl′
.

By (4.35), (4.36) and Lemma 4.13,

H
nl′
0 ≤ H

nl′
0 +H

nl′
1 = −Bnl′ −H

nl′
2 −H

nl′
3 ≤ |Bnl′ |+ |Hnl′

2 |+ |Hnl′
3 |

≤ D̄snl′ + c(2α+ 2β + knl′ + k)MDsβ0
nl′

+ c|k − knl′ |MD̂sβ0
nl′

≤ C̄sβ0
nl′

,

where C̄, D̄ > 0 is a constant, i.e.,

(4.37) tnl′ − t ≤ C̄

Hnl′
sβ0
nl′

,

where Hnl′ = H+
nl′

+H0
nl′

+H−
nl′

− (t+ tnl′ ) with

H+
nl′

= cα(η1t+ (1− η1)tnl′ )
α−1

∫
Ω+

α|x|r|vnl′ (x)|αdx,

H0
nl′

= cβ(η2t+ (1− η2)tnl′ )
β−1

∫
Ω0

(β + k)|x|r|vnl′ (x)|
βdx,

and

H−
nl′

= cβ(η2t+ (1− η2)tnl′ )
β−1

∫
Ω−

β|x|r|vnl′ (x)|
βdx,

η1, η2 ∈ [0, 1]. Similar to Lemma 4.14, since vnl′ → v, by (4.28), we have, ∀ε > 0,

|
∫
Ω̂

|x|r|vnl′ (x)|
γdx−

∫
Ω̂

|x|r|v(x)|γdx| ≤ ε,

where (γ, Ω̂) = (α,Ω+),(β,Ω0),(β,Ω−), as nl′ is large. By this inequality, ∀ζ > 0,

(4.38) |Hnl′ − H̄nl′ | ≤ ζ,

as nl′ is large, where H̄nl′ = H̄+
nl′

+ H̄0
nl′

+ H̄−
nl′

− (t+ tnl′ ).

H̄+
nl′

= cα(η1t+ (1− η1)tnl′ )
α−1

∫
Ω+

α1|x|r|v(x)|αdx,

H̄0
nl′

= cβ(η2t+ (1− η2)tnl′ )
β−1

∫
Ω0

(β + k)|x|r|v(x)|βdx,

and

H̄−
nl′

= cβ(η2t+ (1− η2)tnl′ )
β−1

∫
Ω−

β|x|r|v(x)|βdx.

Since p(v) = tv, t > 0,

t2 − c

∫
Ω+

α|tv(x)|αdx− c

∫
Ω0

(β + k)|tv(x)|βdx− c

∫
Ω−

β|tv(x)|βdx = 0.

Then, for large nl′ ,

(4.39) H̄nl′ ≥ (β − β − 2

4
)t− (2 +

β − 2

4
)t =

β − 2

2
t.

By (4.38) and (4.39), if we set ζ = β−2
4 t, then, for large nl′ ,

(4.40) Hnl′ >
β − 2

4
t.



2126 XUDONG YAO

By (4.37) and (4.40), for large nl′ ,

|tnl′ − t|
sβ0
nl′

=
tnl′ − t

sβ0
nl′

<
4C̄

(β − 2)t
.

This is a contradiction to (4.33). Hence, the conclusion is correct. �

Lemma 4.16. Assume that L = {0}, f(x, t) is in (4.2), p is a peak selection of J
(4.1) defined on SL⊥ , p(w) = tww, tw > 0 for w ∈ SL⊥ , p is continuous at v ∈ SL⊥

and {vn} ⊂ SL⊥ satisfies ‖vn − v‖ ≤ 1, vn → v. Denote p(vn) = tnvn, tn > 0,
p(v) = tv, t > 0 and β0 = 1

2 + α0, α0 ∈ (0, 16 ]. An
i , B

n
i , C

n
i , i = 1, 2, 3, are defined

in Lemma 4.10. If An
2 ∪ An

3 ∪ Bn
3 = ∅ for n = 1, 2, ..., then, there is a constant

Lh > 0 such that

|tn − t| ≤ Lh‖vn − v‖β0 .

Proof. By Lemma 2.12, denote vn = 1√
1+s2n

(v − sndn), ‖dn‖ = 1, 〈dn, v〉 = 0 and

sn ≥ 0. Suppose that there is not a constant Lh > 0 such that

|tn − t| ≤ Lh‖vn − v‖β0 .

Then, similar to Lemma 4.14, there is {tnl
} such that

(4.41)
|tnl

− t|
sβ0
nl

→ +∞.

Then, by Lemma 4.10 and Lemma 4.11, there are the following six cases. In
these six cases, {nl′} represents a subsequence of {nl}.

The first case is there are {tnl′ } and {Bnl′
2 } such that t < tnl′ , B

nl′
2 �= ∅ and∫

B
n
l′

2

|tnl′ vnl′ (x)|dx ≤ Dsβ0
nl′

,

where D > 0 is a constant.
The second case is there are {tnl′} and {Bnl′

2 } such that t < tnl′ and B
nl′
2 = ∅.

The third case is there are {Cnl′
1 ∪ C

nl′
2 ∪ B

nl′
1 }, {tnl′ } and {Bnl′

2 } such that

C
nl′
1 ∪ C

nl′
2 ∪B

nl′
1 �= ∅, t > tnl′ , B

nl′
2 �= ∅ and∫

C
n
l′

1 ∪C
n
l′

2 ∪B
n
l′

1

|tv(x)|dx ≤ Dsβ0
nl′

and

∫
B

n
l′

2

|tv(x)|dx ≤ Dsβ0
nl′

,

where D > 0 is a constant.
The fourth case is there are {Cnl′

1 ∪ C
nl′
2 ∪ B

nl′
1 }, {tnl′ } and {Bnl′

2 } such that

C
nl′
1 ∪ C

nl′
2 ∪B

nl′
1 �= ∅, t > tnl′ , B

nl′
2 = ∅ and∫

C
n
l′

1 ∪C
n
l′

2 ∪B
n
l′

1

|tv(x)|dx ≤ Dsβ0
nl′

.

The fifth case is there are {Cnl′
1 ∪ C

nl′
2 ∪ B

nl′
1 }, {tnl′} and {Bnl′

2 } such that

C
nl′
1 ∪ C

nl′
2 ∪B

nl′
1 = ∅, t > tnl′ , B

nl′
2 �= ∅ and∫

B
n
l′

2

|tv(x)|dx ≤ Dsβ0
nl′

,

where D > 0 is a constant.
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The sixth case is there are {Cnl′
1 ∪ C

nl′
2 ∪ B

nl′
1 }, {tnl′} and {Bnl′

2 } such that

C
nl′
1 ∪ C

nl′
2 ∪B

nl′
1 = ∅, t > tnl′ and B

nl′
2 = ∅.

The first and second cases can be dealt with similarly to Lemma 4.15 and the
third, fourth, fifth and sixth cases can be handled similarly to Lemma 4.14. �

By Lemma 4.10–Lemma 4.16, we can proof the following theorem.

Theorem 4.17. Assume that L = {0}, f(x, t) is in (4.2), p is a peak selection
of J (4.1) defined on SL⊥ , p(w) = tww, tw > 0 for w ∈ SL⊥ and p is continuous
at v ∈ SL⊥ . Denote p(v) = tv, t > 0. Then, there is a constant Lh > 0 and a
neighborhood N (v) of v on SL⊥ such that, ∀u ∈ N (v),

‖p(u)− p(v)‖ ≤ Lh‖u− v‖β0 ,

where β0 = 1
2 + α0, α0 ∈ (0, 16 ].

Proof. Suppose that the conclusion is not true. Then, there exists {vn} ⊂ SL⊥

such that ‖vn − v‖ ≤ 1, vn → v and

lim
n→∞

‖p(vn)− p(v)‖
‖vn − v‖β0

= +∞.

On the other hand,

|tn − t| = ‖(tn − t)vn‖ ≥ ‖(tn − t)vn + t(vn − v)‖ − ‖t(vn − v)‖
= ‖tnvn − tv‖ − t‖vn − v‖ = ‖p(vn)− p(v)‖ − t‖vn − v‖,

where p(vn) = tnvn and tn > 0. Hence, we have

(4.42) lim
n→∞

|tn − t|
‖vn − v‖β0

= +∞.

It is obvious that there are two cases. The first is there is {Anl
2 ∪ Anl

3 ∪ Bnl
3 }

such that Anl
2 ∪ Anl

3 ∪ Bnl
3 �= ∅ and the second is there is {Anl

2 ∪ Anl
3 ∪ Bnl

3 } such
that Anl

2 ∪ Anl
3 ∪Bnl

3 = ∅.
For the first case, by Lemma 4.10, there are two subcases. The first one is there

is {Anl′
2 ∪A

nl′
3 ∪B

nl′
3 } such that A

nl′
2 ∪A

nl′
3 ∪B

nl′
3 �= ∅ and t > tnl′ and the second

one is there is {Anl′
2 ∪A

nl′
3 ∪B

nl′
3 } such that A

nl′
2 ∪ A

nl′
3 ∪B

nl′
3 �= ∅, t < tnl′ and∫

Ωnl′

|tnl′ vnl′ (x)|dx ≤ Csβ0
nl′

,

where Ωnl′ = A
nl′
2 ∪ A

nl′
3 ∪B

nl′
3 , C > 0 is a constant, vnl′ =

1√
1+s2n

l′
(v − snl′dnl′ ),

‖dnl′‖ = 1, 〈dnl′ , v〉 = 0 and snl′ ≥ 0, and {nl′} is a subsequence of {nl}. By

Lemma 4.14 and Lemma 4.15, there is a constant L̄h > 0 such that

|tnl′ − t| ≤ L̄h‖vnl′ − v‖β0 .

This is a contradiction to (4.42).

For the second case, by Lemma 4.16, there is a constant L̂h > 0 such that

|tnl
− t| ≤ L̂h‖vnl

− v‖β0 .

This is also a contradiction to (4.42). �

By Theorem 4.17, a conclusion on super-linear property of peak selection to J
(4.1) with f(x, t) (4.2) can be verified.
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Theorem 4.18. Assume that L = {0}, f(x, t) is in (4.2), p is a peak selection of
J (4.1) defined on SL⊥ , p(w) = tww, tw > 0 for w ∈ SL⊥ and p is continuous at
v ∈ SL⊥ . Then, p has super-linear property at v.

Proof. For every {vn} ⊂ SL⊥ such that ‖vn−v‖ ≤ 1, vn → v, denote p(vn) = tnvn,
tn > 0 and p(v) = tv, t > 0. By Theorem 4.17, there is a constant Lh > 0 such
that, for large n,

(4.43) ‖p(vn)− p(v)‖ ≤ Lh‖vn − v‖β0 ,

β0 = 1
2 + α0, α0 ∈ (0, 16 ]. On the other hand,

1

2

∫
Ω

|∇w|2dx− 1

2

∫
Ω

|∇u|2dx = 〈∇u,∇w −∇u〉+ 1

2

∫
Ω

|∇w −∇u|2dx

= −〈Δu,w − u〉+ 1

2
‖w − u‖2.

Then, by Remark 2.9, F (w;u, z) = 1
2‖w−u‖2 is an upper-bound functional around

u for z ∈ ∂J(u).
Thus, by (4.43),

lim
n→∞

F (p(vn); p(v), z)

‖vn − v‖ = lim
n→∞

‖p(vn)− p(v)‖2
2‖vn − v‖ = 0,

i.e., p has super-linear property at v. �
Remark 4.19. To our numerical example, Lemma 4.1, Lemma 4.3, Lemma 4.5
and Theorem 4.18 guarantee that the peak selection p(v) = tv, where t > 0 and
J(tv) = maxs≥0 J(sv), has super-linear property on SL⊥ , where L = {0}.

Now, we start to discuss the details on numerical computation. To carry out the
minimax algorithm, we need to find zkn to construct a descent direction. Thus, we
have to solve the linear equation

(4.44)

{
Δz(x) = −Δp(vkn)(x)− ζkn(x), x ∈ Ω,
z(x)|x∈∂Ω = 0,

where ζkn ∈ ∂G(p(vkn)) and p is a peak selection to the variational functional J
(4.1). By Theorem 1.3, it is still hard to find ζkn ∈ ∂G(p(vkn)) since the in-

clusion ∂G(p(vkn))(x) ⊆ [f̄(x, p(vkn)(x), f̂(x, p(v
k
n)(x))] offers little information on

∂G(p(vkn)). For nice f(x, t), Theorem 1.5 gives us an equality

∂G(u) = {ζ : Ω → R|ζ is measurable, ζ(x)

∈ [f(x, u(x)− 0), f(x, u(x) + 0)] ∀x ∈ Ω}.
Indeed, we have the following simple lemma.

Lemma 4.20. If f(x, t) is a Baire-measurable function defined on Ω× R, is non-
decreasing in t and satisfies

|f(x, t)| ≤ C1 + C2|t|σ,
where 0 < σ < m+2

m−2 for m ≥ 3, σ > 0 for m = 1, 2 and C1, C2 > 0 are two

constants, then we have that, in H1
0 (Ω), for v ∈ SL⊥ , ζ ∈ ∂G(p(v)) and (Δp(v) +

ζ) ⊥ [L, v] is equivalent to ζ is a solution to the convex optimization problem

(4.45) min
η∈D

L(η) =
n−1∑
i=1

(

∫
Ω

(Δp(v) + η)uidx)
2 + (

∫
Ω

(Δp(v) + η)vdx)2,
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where D = {η : Ω → R|η is measurable, η(x) ∈ [f(x, p(v)(x) − 0), f(x, p(v)(x) +
0)] ∀x ∈ Ω} and p is a peak selection to the variational functional J (4.1) w.r.t. a
finite dimensional subspace L ⊂ H1

0 (Ω).

Proof. If ζ satisfies ζ ∈ ∂G(p(v)) and (Δp(v)+ζ) ⊥ [L, v], then, by Theorem 1.5, ζ ∈
D and L(ζ) = 0, i.e., ζ is a solution to the convex optimization problem (4.45). If ζ is
a solution to the convex optimization problem (4.45), then, ζ ∈ D, i.e., ζ ∈ ∂G(p(v))
by Theorem 1.5. On the other hand, Lemma 2.2 says minη∈D L(η) = 0, i.e.,
(Δp(v) + ζ) ⊥ [L, v]. Hence, ζ satisfies ζ ∈ ∂G(p(v)) and (Δp(v) + ζ) ⊥ [L, v]. �

To L = {0}, we have a conclusion as follows.

Lemma 4.21. Assume that f(x, t) = g(x)h(t) is a Baire-measurable function de-
fined on Ω× R, 0 ≤ g(x) ≤ C in Ω for constant C, and h(t) is nondecreasing in t
and satisfies

|h(t)| ≤ C1 + C2|t|σ,
for t ∈ R, where 0 < σ < m+2

m−2 for m ≥ 3, σ > 0 for m = 1, 2 and C1, C2 > 0 are

two constants. If h(t) is discontinuous at t1, ..., tk and continuous elsewhere, then,
for v ∈ H1

0 (Ω) with ‖v‖ = 1, there are di ∈ [h(ti − 0), h(ti + 0)], i = 1, ..., k, such
that ζ ∈ ∂G(p(v)) and (Δp(v) + ζ) ⊥ v, where

(4.46) ζ(x) =

{
g(x)h(p(v)(x)), if p(v)(x) /∈ {t1, ..., tk},
g(x)di, if p(v)(x) = ti, i = 1, ..., k,

p is a peak selection to the variational functional J (4.1) and p(v) �= 0.

Proof. Denote p(v) = k(v)v, k(v) ∈ R. Without loss of generality, we assume
k(v) > 0. By Lemma 2.2, there is a z ∈ ∂G(p(v)) such that (Δp(v)+ z) ⊥ v. Thus,
by Theorem 1.5,

ζ+0 (x) =

⎧⎨
⎩

g(x)h(p(v)(x)), if p(v)(x) /∈ {t1, ..., tk},
g(x)h(ti + 0), if p(v)(x) = ti ≥ 0,
g(x)h(ti − 0), if p(v)(x) = ti < 0

and

ζ−0 (x) =

⎧⎨
⎩

g(x)h(p(v)(x)), if p(v)(x) /∈ {t1, ..., tk},
g(x)h(ti − 0), if p(v)(x) = ti ≥ 0,
g(x)h(ti + 0), if p(v)(x) = ti < 0,

satisfy ζ+0 , ζ−0 ∈ ∂J(p(v)),∫
Ω

(Δp(v) + ζ+0 )vdx ≥
∫
Ω

(Δp(v) + z)vdx = 0

and ∫
Ω

(Δp(v) + ζ−0 )vdx ≤
∫
Ω

(Δp(v) + z)vdx = 0.

Then, we can construct {ζ+i } and {ζ−i } such that ζ+i , ζ−i ∈ ∂J(p(v)),∫
Ω

(Δp(v) + ζ+i )vdx ≥ 0 and

∫
Ω

(Δp(v) + ζ−i )vdx ≤ 0,

where {
ζ−i = ζ−i−1,
ζ+i = 1

2 (ζ
−
i−1 + ζ+i−1),
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if
∫
Ω
(Δp(v) + 1

2 (ζ
−
i−1 + ζ+i−1))vdx ≥ 0, or

{
ζ−i = 1

2 (ζ
−
i−1 + ζ+i−1),

ζ+i = ζ+i−1,

if
∫
Ω
(Δp(v)+ 1

2 (ζ
−
i−1+ζ+i−1))vdx ≤ 0, i = 1, 2, .... During this process, if

∫
Ω
(Δp(v)+

ζ+i )vdx = 0 or
∫
Ω
(Δp(v) + ζ−i )vdx = 0, then ζ = ζ+i or ζ = ζ−i . Otherwise,

ζ(x) = lim
i→∞

ζ+i (x) = lim
i→∞

ζ−i (x)

is in (4.46) and satisfies ζ ∈ ∂G(p(v)) and (Δp(v) + ζ) ⊥ v. �

Remark 4.22. The proof gives us a simple iterative way to numerically capture a
ζ ∈ ∂G(p(v)) such that (Δp(v) + ζ) ⊥ v.

It is easy to check that u = 0 is a minimal point of J (4.1) if f is in (4.2). Among
saddle points, people usually pay more attention to Mountain Pass type saddle
points. In this paper, we concentrate on computing them. Of course, more saddle
points can be captured if symmetry is used. Thus, in our numerical computation,
Lemma 4.21 is used for computing ζkn and then the Poisson equation (4.44) is
solved to get zkn in the algorithm; even or odd symmetry about the origin is used
for capturing symmetric saddle points as Ω = (−1, 1) and even or odd symmetry
about x1-axis, x2-axis or the diagonal lines x2 = −x1 is used to capture symmetric
saddle points as Ω = (−1, 1) × (−1, 1), {(x1, x2) ∈ R|x2

1 + x2
2 < 1}. To solve

the Poisson equation (4.44), the finite element method is employed. Over 5 × 104

elements on Ω ⊂ R and 5× 105 triangle elements on Ω ⊂ R
2 are used. The profiles

of approximations for saddle points are listed in Figures 1–10. The corresponding
values of J (4.1) are listed in captions. Symmetry of saddle point is also pointed
out in captions. Then min{‖ζ‖|ζ ∈ ∂J(u)} of every approximation u is less than
10−3. Hence, these approximations are good approximations of saddle points.

We set α = 8, β = 6 and Ω = (−1, 1) in Figures 1 and 2, c = 1 in Figure 1 and
c = 24.0625 in Figure 2. For the first and the second in Figures 1 and 2, r = 0
and in the third and the fourth, r = 4. Odd symmetry about the origin is used for
capturing the second and even symmetry about the origin is used for calculating
the fourth in these two figures. We set α = 8, β = 6 to Figures 3–10, c = 1 to
Figures 3–6, c = 14

11 to Figures 7 and 8 and c = 60 to Figures 9 and 10. For Figures
3, 5, 7, and 8, r = 0 and to Figures 4, 6, 9, and 10, r = 4. For the domain,
Ω = (−1, 1)× (−1, 1) to Figures 3, 4, 7, and 9 and Ω = {(x1, x2) ∈ R|x2

1 + x2
2 < 1}

to Figures 5, 6, 8, and 10. For capturing the third in Figures 3, 6, 7, and 10 and
the second in Figures 5, 8, odd symmetry for x2-axis is used and for computing
the second in Figures 4, 6, 9, and 10, even symmetry for x2-axis is used. For
computing the second in Figures 3 and 7 and the third in Figures 4 and 9, odd
and even symmetry for the line x2 = −x1 are used respectively. Odd symmetry
for x1-axis and x2-axis are used for the fourth in Figures 3 and 7 and the third in
Figures 5 and 8 and even symmetry for x1-axis and x2-axis are used for the fourth
in Figures 4, 6, 9, and 10. v11 = v

‖v‖ was used as initial point for calculating the
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first in Figure 7, where

v(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2(x2 + 1), x2 ∈ [−1,− 1
2 ], x1 + x2 ≤ 0, x1 − x2 ≥ 0,

2(1− x2), x2 ∈ [ 12 , 1], x1 + x2 ≥ 0, x1 − x2 ≤ 0,
2(x1 + 1), x1 ∈ [−1,− 1

2 ], x1 + x2 ≤ 0, x1 − x2 ≤ 0,
2(1− x1), x1 ∈ [ 12 , 1], x1 + x2 ≥ 0, x1 − x2 ≥ 0,
1, (x1, x2) ∈ [− 1

2 ,
1
2 ]× [− 1

2 ,
1
2 ].

It is easy to check that∫ ∫
Ω

v6(x)dx =
37

28
and

∫ ∫
Ω

|∇v(x)|2dx = 12,

where Ω = (−1, 1)× (−1, 1). Denote φ(t) = J(tv11) for J (4.1). Then, we have

∂φ(t) = {〈z, v11〉|z ∈ ∂J(tv11)}.
For the first in Figure 7, by (4.4),

∂φ(t) = {−
∫ ∫

Ω

(Δu+ ζ)v11dx|ζ is measurable, ζ(x) ∈ f+
− (x, u(x)) ∀x ∈ Ω},

where

f+
− (x, u(x)) = [f(x, u(x)−0), f(x, u(x)+0)] =

⎧⎪⎪⎨
⎪⎪⎩

{8c|u(x)|6u(x)}, if |u(x)| > 1,
{6c|u(x)|4u(x)}, if |u(x)| < 1,
[6c, 8c], if u(x) = 1,
[−8c,−6c], if u(x) = −1,

u = tv11 and c = 14
11 . The equality,∫ ∫

Ω

|∇v|2dx− c(6

∫ ∫
Ω

v6dx+
3

2
) = 0,

means 0 ∈ ∂φ(‖v‖). As t is less than ‖v‖ and very close to ‖v‖,
dφ

dt
=

1

t
(

∫ ∫
Ω

|∇(tv11)|2dx− 6c

∫ ∫
Ω

(tv11)
6dx)

>
1

t
(

∫ ∫
Ω

|∇v|2dx− c(6

∫ ∫
Ω

v6dx+
3

2
)) = 0

and as t is larger than ‖v‖ and very close to ‖v‖,
dφ

dt
=

1

t
(

∫ ∫
Ω

|∇(tv11)|2dx− c(6

∫ ∫
Ω0

(tv11)
6dx+ 8

∫ ∫
Ω1

(tv11)
8dx))

<
1

t
(

∫ ∫
Ω

|∇(tv11)|2dx− c(6

∫ ∫
Ω

(tv11)
6dx+ 2

∫ ∫
Ω1

(tv11)
8dx))

<
1

t
(

∫ ∫
Ω

|∇v|2dx− c(6

∫ ∫
Ω

v6dx+
3

2
)) = 0,

where Ω0 = {x ∈ Ω|tv11(x) ≤ 1} and Ω1 = {x ∈ Ω|tv11(x) > 1}. Thus, p(v11) = v.
The point p(v11) is a nonsmooth point of J .
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Figure 1. c=1, r=0 for (a) and (b), r=4 for (c) and (d). (a)
J=0.6342, positive saddle point, (b) J=4.4818, saddle point odd
symmetric about the origin, (c) J =2.9981, positive saddle point,
(d) J=3.9094, saddle point even symmetric about the origin.
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Figure 2. c = 24.0625, r = 0 for (a) and (b), r = 4 for (c) and
(d). (a) J = 0.1296, positive saddle point, (b) J = 1.0331, saddle
point odd symmetric about the origin, (c) J = 0.9372, positive
saddle point, (d) J = 1.2156, saddle point odd symmetric about
the origin.
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Figure 3. c = 1, r = 0. (a) J = 1.5746, positive saddle point,
(b) J = 4.3662, saddle point odd symmetric for x2 = −x1, (c) J =
4.5596, saddle point odd symmetric for x1 = 0 (d) J = 10.1556,
saddle point odd symmetric for x1 = 0 and x2 = 0.
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Figure 4. c = 1, r = 4. (a) J = 3.0167, positive saddle point,
(b) J = 5.8567, saddle point even symmetric for x1 = 0, (c) J =
5.9545, saddle point odd symmetric for x2 = −x1, (d) J = 9.2199,
saddle point even symmetric for x1 = 0 and x2 = 0.
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Figure 5. c = 1, r = 0. (a) J = 1.6614, positive saddle point,
(b) J = 4.7202, saddle point odd symmetric for x1 = 0, (c) J =
11.2632, saddle point odd symmetric for x1 = 0 and x2 = 0.
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Figure 6. c = 1, r = 4. (a) J = 4.2512, positive saddle point,
(b) J = 8.1264, saddle point even symmetric for x1 = 0, (c) J =
8.8090, saddle point odd symmetric for x1 = 0, (d) J = 10.1558,
saddle point even symmetric for x1 = 0 and x2 = 0.
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Figure 7. c = 14
11 , r = 0. (a) J = 1.4439, positive saddle point,

(b) J = 4.0388, saddle point odd symmetric for x2 = −x1, (c)
J = 4.1995, saddle point odd symmetric for x1 = 0 (d) J = 9.3593,
saddle point odd symmetric for x1 = 0 and x2 = 0.

0
0.5

1
0

0.5
1
0

0.5

1

1.5

0
0.5

1
0

0.5
1

0

1

2

0
0.5

1
0

0.5
1

0

1

2

(a) (b) (c)

Figure 8. c = 14
11 , r = 0. (a) J = 1.5250, positive saddle point,

(b) J = 4.3483, saddle point odd symmetric for x1 = 0 (c) J =
10.3838, saddle point odd symmetric for x1 = 0 and x2 = 0.
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Figure 9. c = 60, r = 4. (a) J = 0.6098, positive saddle point,
(b) J = 1.1663, saddle point even symmetric for x1 = 0 (c) J =
1.1958, saddle point even symmetric for x2 = −x1, (d) J = 1.8055,
saddle point even symmetric for x1 = 0 and x2 = 0.
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Figure 10. c = 60, r = 4. (a) J = 1.0044, positive saddle point,
(b) J = 1.8906, saddle point even symmetric for x1 = 0 (c) J =
2.1015, saddle point odd symmetric for x1 = 0 (d) J = 2.2920,
saddle point even symmetric for x1 = 0 and x2 = 0.
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