The second order spectrum and optimal convergence
HTML articles powered by AMS MathViewer
- by Michael Strauss;
- Math. Comp. 82 (2013), 2305-2325
- DOI: https://doi.org/10.1090/S0025-5718-2013-02693-2
- Published electronically: April 9, 2013
- PDF | Request permission
Abstract:
The method of second order relative spectra has been shown to reliably approximate the discrete spectrum for a self-adjoint operator. We extend the method to normal operators and find optimal convergence rates for eigenvalues and eigenspaces. The convergence to eigenspaces is new, while the convergence rate for eigenvalues improves on the previous estimate by an order of magnitude.References
- Daniele Boffi, Franco Brezzi, and Lucia Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form, Math. Comp. 69 (2000), no. 229, 121–140. MR 1642801, DOI 10.1090/S0025-5718-99-01072-8
- D. Boffi, R. G. Duran, and L. Gastaldi, A remark on spurious eigenvalues in a square, Appl. Math. Lett. 12 (1999), no. 3, 107–114. MR 1749719, DOI 10.1016/S0893-9659(98)00181-5
- Lyonell Boulton, Non-variational approximation of discrete eigenvalues of self-adjoint operators, IMA J. Numer. Anal. 27 (2007), no. 1, 102–121. MR 2289273, DOI 10.1093/imanum/drl015
- Lyonell Boulton, Limiting set of second order spectra, Math. Comp. 75 (2006), no. 255, 1367–1382. MR 2219033, DOI 10.1090/S0025-5718-06-01830-8
- Lyonell Boulton and Michael Levitin, On approximation of the eigenvalues of perturbed periodic Schrödinger operators, J. Phys. A 40 (2007), no. 31, 9319–9329. MR 2345295, DOI 10.1088/1751-8113/40/31/010
- Lyonell Boulton and Michael Strauss, On the convergence of second-order spectra and multiplicity, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), no. 2125, 264–284. MR 2764683, DOI 10.1098/rspa.2010.0233
- Lyonell Boulton and Nabile Boussaid, Non-variational computation of the eigenstates of Dirac operators with radially symmetric potentials, LMS J. Comput. Math. 13 (2010), 10–32. MR 2593910, DOI 10.1112/S1461157008000429
- Françoise Chatelin, Spectral approximation of linear operators, Computer Science and Applied Mathematics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With a foreword by P. Henrici; With solutions to exercises by Mario Ahués. MR 716134
- M. Dauge and M. Suri, Numerical approximation of the spectra of non-compact operators arising in buckling problems, J. Numer. Math. 10 (2002), no. 3, 193–219. MR 1935966, DOI 10.1515/JNMA.2002.193
- E. B. Davies, Spectral enclosures and complex resonances for general self-adjoint operators, LMS J. Comput. Math. 1 (1998), 42–74. MR 1635727, DOI 10.1112/S1461157000000140
- E. B. Davies and M. Plum, Spectral pollution, IMA J. Numer. Anal. 24 (2004), no. 3, 417–438. MR 2068830, DOI 10.1093/imanum/24.3.417
- Tosio Kato, On the upper and lower bounds of eigenvalues, J. Phys. Soc. Japan 4 (1949), 334–339. MR 38738, DOI 10.1143/JPSJ.4.334
- Tosio Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261–322. MR 107819, DOI 10.1007/BF02790238
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 203473
- Michael Levitin and Eugene Shargorodsky, Spectral pollution and second-order relative spectra for self-adjoint operators, IMA J. Numer. Anal. 24 (2004), no. 3, 393–416. MR 2068829, DOI 10.1093/imanum/24.3.393
- Marco Marletta, Neumann-Dirichlet maps and analysis of spectral pollution for non-self-adjoint elliptic PDEs with real essential spectrum, IMA J. Numer. Anal. 30 (2010), no. 4, 917–939. MR 2727810, DOI 10.1093/imanum/drp017
- Eugene Shargorodsky, Geometry of higher order relative spectra and projection methods, J. Operator Theory 44 (2000), no. 1, 43–62. MR 1774693
- J. Rappaz, J. Sanchez Hubert, E. Sanchez Palencia, and D. Vassiliev, On spectral pollution in the finite element approximation of thin elastic “membrane” shells, Numer. Math. 75 (1997), no. 4, 473–500. MR 1431212, DOI 10.1007/s002110050249
- Michael Strauss, Quadratic projection methods for approximating the spectrum of self-adjoint operators, IMA J. Numer. Anal. 31 (2011), no. 1, 40–60. MR 2755936, DOI 10.1093/imanum/drp013
- R. Strichartz, The Way of Analysis. Jones and Bartlett (2000).
- S. Zimmermann and U. Mertins, Variational bounds to eigenvalues of self-adjoint eigenvalue problems with arbitrary spectrum, Z. Anal. Anwendungen 14 (1995), no. 2, 327–345. MR 1337263, DOI 10.4171/ZAA/677
Bibliographic Information
- Michael Strauss
- Affiliation: School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, Wales, United Kingdom CF24 4AG
- Email: straussmd@cardiff.ac.uk
- Received by editor(s): May 10, 2011
- Received by editor(s) in revised form: June 13, 2011, and February 28, 2012
- Published electronically: April 9, 2013
- Additional Notes: The author gratefully acknowledges the support of EPSRC grant no. EP/I00761X/1.
- © Copyright 2013 American Mathematical Society
- Journal: Math. Comp. 82 (2013), 2305-2325
- MSC (2010): Primary 47A75, 47B15
- DOI: https://doi.org/10.1090/S0025-5718-2013-02693-2
- MathSciNet review: 3073202