Accelerating Dougall’s $_5F_4$-sum and infinite series involving $\pi$
HTML articles powered by AMS MathViewer
- by Wenchang Chu and Wenlong Zhang;
- Math. Comp. 83 (2014), 475-512
- DOI: https://doi.org/10.1090/S0025-5718-2013-02701-9
- Published electronically: April 26, 2013
- PDF | Request permission
Abstract:
The modified Abel lemma on summation by parts is employed to investigate the partial sum of Dougall’s $_5H_5$-series. Several unusual transformation formulae into fast convergent series are established. They lead surprisingly to numerous infinite series identities involving $\pi$, $\zeta (3)$ and the Catalan constant, including several important ones discovered by Ramanujan (1914) and recently by Guillera.References
- V. Adamchik and S. Wagon, $\pi$: A 2000-year search changes direction, Mathematica in Education and Research 5:1 (1996), 11–19.
- Tewodros Amdeberhan, Faster and faster convergent series for $\zeta (3)$, Electron. J. Combin. 3 (1996), no. 1, Research Paper 13, approx. 2. MR 1383739, DOI 10.37236/1237
- Tewodros Amdeberhan and Doron Zeilberger, Hypergeometric series acceleration via the WZ method, Electron. J. Combin. 4 (1997), no. 2, Research Paper 3, approx. 4. The Wilf Festschrift (Philadelphia, PA, 1996). MR 1444150, DOI 10.37236/1318
- Journées Arithmétiques de Luminy, Société Mathématique de France, Paris, 1979 (French). Colloque International du Centre National de la Recherche Scientifique (CNRS) held at the Centre Universitaire de Luminy, Luminy, June 20–24, 1978; Astérisque No. 61 (1979). MR 556662
- David H. Bailey and Jonathan M. Borwein, Experimental mathematics: examples, methods and implications, Notices Amer. Math. Soc. 52 (2005), no. 5, 502–514. MR 2140093
- David H. Bailey and Jonathan M. Borwein, Computer-assisted discovery and proof, Tapas in experimental mathematics, Contemp. Math., vol. 457, Amer. Math. Soc., Providence, RI, 2008, pp. 21–52. MR 2427663, DOI 10.1090/conm/457/08901
- D. H. Bailey, J. M. Borwein, P. B. Borwein, and S. Plouffe, The quest for pi, Math. Intelligencer 19 (1997), no. 1, 50–57. MR 1439159, DOI 10.1007/BF03024340
- David H. Bailey, Jonathan M. Borwein, Neil J. Calkin, Roland Girgensohn, D. Russell Luke, and Victor H. Moll, Experimental mathematics in action, A K Peters, Ltd., Wellesley, MA, 2007. MR 2320374
- David Bailey, Peter Borwein, and Simon Plouffe, On the rapid computation of various polylogarithmic constants, Math. Comp. 66 (1997), no. 218, 903–913. MR 1415794, DOI 10.1090/S0025-5718-97-00856-9
- W. N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935.
- Nayandeep Deka Baruah and Bruce C. Berndt, Ramanujan’s Eisenstein series and new hypergeometric-like series for $1/\pi ^2$, J. Approx. Theory 160 (2009), no. 1-2, 135–153. MR 2558018, DOI 10.1016/j.jat.2008.04.002
- Nayandeep Deka Baruah, Bruce C. Berndt, and Heng Huat Chan, Ramanujan’s series for $1/\pi$: a survey, Amer. Math. Monthly 116 (2009), no. 7, 567–587. MR 2549375, DOI 10.4169/193009709X458555
- G. Bauer, Von den Coefficienten der Reihen von Kugelfunctionen einer Variabeln, J. Reine Angew. Math. 56 (1859), 101–121.
- Lennart Berggren, Jonathan Borwein, and Peter Borwein, Pi: a source book, 2nd ed., Springer-Verlag, New York, 2000. MR 1746004, DOI 10.1007/978-1-4757-3240-5
- Bruce C. Berndt, Ramanujan’s notebooks. Part I, Springer-Verlag, New York, 1985. With a foreword by S. Chandrasekhar. MR 781125, DOI 10.1007/978-1-4612-1088-7
- Bruce C. Berndt, Ramanujan’s notebooks. Part IV, Springer-Verlag, New York, 1994. MR 1261634, DOI 10.1007/978-1-4612-0879-2
- Bruce C. Berndt, Ramanujan’s notebooks. Part V, Springer-Verlag, New York, 1998. MR 1486573, DOI 10.1007/978-1-4612-1624-7
- Bruce C. Berndt, S. Bhargava, and Frank G. Garvan, Ramanujan’s theories of elliptic functions to alternative bases, Trans. Amer. Math. Soc. 347 (1995), no. 11, 4163–4244. MR 1311903, DOI 10.1090/S0002-9947-1995-1311903-0
- George Boros and Victor Moll, Irresistible integrals, Cambridge University Press, Cambridge, 2004. Symbolics, analysis and experiments in the evaluation of integrals. MR 2070237, DOI 10.1017/CBO9780511617041
- Jonathan Borwein and David Bailey, Mathematics by experiment, A K Peters, Ltd., Natick, MA, 2004. Plausible reasoning in the 21st century. MR 2033012
- Jonathan Borwein, David Bailey, and Roland Girgensohn, Experimentation in mathematics, A K Peters, Ltd., Natick, MA, 2004. Computational paths to discovery. MR 2051473
- Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1987. A study in analytic number theory and computational complexity; A Wiley-Interscience Publication. MR 877728
- J. M. Borwein and P. B. Borwein, Ramanujan and pi, Scientific American 258:2 (1988), 112–117.
- J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi’s identity and the AGM, Trans. Amer. Math. Soc. 323 (1991), no. 2, 691–701. MR 1010408, DOI 10.1090/S0002-9947-1991-1010408-0
- Wenchang Chu, Abel’s method on summation by parts and hypergeometric series, J. Difference Equ. Appl. 12 (2006), no. 8, 783–798. MR 2248785, DOI 10.1080/10236190600704096
- Wenchang Chu, Bailey’s very well-poised ${}_6\psi _6$-series identity, J. Combin. Theory Ser. A 113 (2006), no. 6, 966–979. MR 2244127, DOI 10.1016/j.jcta.2005.08.009
- Wenchang Chu, Abel’s lemma on summation by parts and basic hypergeometric series, Adv. in Appl. Math. 39 (2007), no. 4, 490–514. MR 2356433, DOI 10.1016/j.aam.2007.02.001
- Wenchang Chu, Asymptotic method for Dougall’s bilateral hypergeometric sums, Bull. Sci. Math. 131 (2007), no. 5, 457–468. MR 2337736, DOI 10.1016/j.bulsci.2006.09.002
- Wenchang Chu and Cangzhi Jia, Abel’s method on summation by parts and theta hypergeometric series, J. Combin. Theory Ser. A 115 (2008), no. 5, 815–844. MR 2417023, DOI 10.1016/j.jcta.2007.11.002
- D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication according to Ramanujan, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 375–472. MR 938975
- J. Dougall, On Vandermonde’s theorem and some more general expansions, Proc. Edinburgh Math. Soc. 25 (1907), 114–132.
- J. W. L. Glaisher, On series for $1/\pi$ and $1/\pi ^2$, Quart. J. Pure Appl. Math. 37 (1905), 173–198.
- R. William Gosper Jr., Decision procedure for indefinite hypergeometric summation, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), no. 1, 40–42. MR 485674, DOI 10.1073/pnas.75.1.40
- Jesús Guillera, Some binomial series obtained by the WZ-method, Adv. in Appl. Math. 29 (2002), no. 4, 599–603. MR 1943367, DOI 10.1016/S0196-8858(02)00034-9
- Jesús Guillera, About a new kind of Ramanujan-type series, Experiment. Math. 12 (2003), no. 4, 507–510. MR 2044000
- Jesús Guillera, A new method to obtain series for $1/\pi$ and $1/\pi ^2$, Experiment. Math. 15 (2006), no. 1, 83–89. MR 2229388
- Jesús Guillera, A class of conjectured series representations for $1/\pi$, Experiment. Math. 15 (2006), no. 4, 409–414. MR 2293592
- Jesús Guillera, Generators of some Ramanujan formulas, Ramanujan J. 11 (2006), no. 1, 41–48. MR 2220656, DOI 10.1007/s11139-006-5306-y
- J. Guillera, Series de Ramanujan: Generalizaciones y Conjeturas, PhD thesis, Universidad de Zaragoza, 2007.
- Jesús Guillera Goyanes, History of the formulas and algorithms for $\pi$, Gac. R. Soc. Mat. Esp. 10 (2007), no. 1, 159–178 (Spanish, with Spanish summary). MR 2331029
- Jesús Guillera, Hypergeometric identities for 10 extended Ramanujan-type series, Ramanujan J. 15 (2008), no. 2, 219–234. MR 2377577, DOI 10.1007/s11139-007-9074-0
- Jesús Guillera, A new Ramanujan-like series for $1/\pi ^2$, Ramanujan J. 26 (2011), no. 3, 369–374. MR 2860693, DOI 10.1007/s11139-010-9259-9
- G. H. Hardy, The Indian Mathematician Ramanujan, Amer. Math. Monthly 44 (1937), no. 3, 137–155. MR 1523880, DOI 10.2307/2301659
- G. H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge; The Macmillan Company, New York, 1940. MR 4860
- Paul Levrie, Using Fourier-Legendre expansions to derive series for ${1\over \pi }$ and ${1\over \pi ^2}$, Ramanujan J. 22 (2010), no. 2, 221–230. MR 2643705, DOI 10.1007/s11139-010-9222-9
- Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger, $A=B$, A K Peters, Ltd., Wellesley, MA, 1996. With a foreword by Donald E. Knuth; With a separately available computer disk. MR 1379802
- Alfred van der Poorten, A proof that Euler missed$\ldots$Apéry’s proof of the irrationality of $\zeta (3)$, Math. Intelligencer 1 (1978/79), no. 4, 195–203. An informal report. MR 547748, DOI 10.1007/BF03028234
- Earl D. Rainville, Special functions, 1st ed., Chelsea Publishing Co., Bronx, NY, 1971. MR 393590
- S. Ramanujan, Modular equations and approximations to $\pi$, Quart. J. Pure Appl. Math. 45 (1914), 350–372.
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 201688
- Karl R. Stromberg, Introduction to classical real analysis, Wadsworth International Mathematics Series, Wadsworth International, Belmont, CA, 1981. MR 604364
- Herbert S. Wilf, Accelerated series for universal constants, by the WZ method, Discrete Math. Theor. Comput. Sci. 3 (1999), no. 4, 189–192. MR 1713426
- Herbert S. Wilf and Doron Zeilberger, Rational functions certify combinatorial identities, J. Amer. Math. Soc. 3 (1990), no. 1, 147–158. MR 1007910, DOI 10.1090/S0894-0347-1990-1007910-7
- Wadim Zudilin, Ramanujan-type formulae for $1/\pi$: a second wind?, Modular forms and string duality, Fields Inst. Commun., vol. 54, Amer. Math. Soc., Providence, RI, 2008, pp. 179–188. MR 2454325
- V. V. Zudilin, More Ramanujan-type formulas for $1/\pi ^2$, Uspekhi Mat. Nauk 62 (2007), no. 3(375), 211–212 (Russian); English transl., Russian Math. Surveys 62 (2007), no. 3, 634–636. MR 2355427, DOI 10.1070/RM2007v062n03ABEH004420
Bibliographic Information
- Wenchang Chu
- Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China
- Address at time of publication: Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Arnesano P. O. Box 193, 73100 Lecce, Italia
- MR Author ID: 213991
- Email: chu.wenchang@unisalento.it
- Wenlong Zhang
- Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China
- Email: wenlong.dlut@yahoo.com.cn
- Received by editor(s): December 9, 2011
- Received by editor(s) in revised form: March 27, 2012
- Published electronically: April 26, 2013
- © Copyright 2013 American Mathematical Society
- Journal: Math. Comp. 83 (2014), 475-512
- MSC (2010): Primary 33D15; Secondary 05A15
- DOI: https://doi.org/10.1090/S0025-5718-2013-02701-9
- MathSciNet review: 3120601