Second $p$-descents on elliptic curves
HTML articles powered by AMS MathViewer
- by Brendan Creutz;
- Math. Comp. 83 (2014), 365-409
- DOI: https://doi.org/10.1090/S0025-5718-2013-02713-5
- Published electronically: May 23, 2013
- PDF | Request permission
Abstract:
Let $p$ be a prime and $C$ a genus one curve over a number field $k$ representing an element of order dividing $p$ in the Shafarevich-Tate group of its Jacobian. We describe an algorithm which computes the set of $D$ in the Shafarevich-Tate group such that $pD = C$ and obtains explicit models for these $D$ as curves in projective space. This leads to a practical algorithm for performing explicit $9$-descents on elliptic curves over $\mathbb {Q}$.References
- B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. I, J. Reine Angew. Math. 212 (1963), 7–25. MR 146143, DOI 10.1515/crll.1963.212.7
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- A. Bremner and J. W. S. Cassels, On the equation $Y^{2}=X(X^{2}+p)$, Math. Comp. 42 (1984), no. 165, 257–264. MR 726003, DOI 10.1090/S0025-5718-1984-0726003-4
- Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $\mathbf Q$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939. MR 1839918, DOI 10.1090/S0894-0347-01-00370-8
- Nils Bruin and Michael Stoll, Two-cover descent on hyperelliptic curves, Math. Comp. 78 (2009), no. 268, 2347–2370. MR 2521292, DOI 10.1090/S0025-5718-09-02255-8
- J. W. S. Cassels, Arithmetic on curves of genus $1$. IV. Proof of the Hauptvermutung, J. Reine Angew. Math. 211 (1962), 95–112. MR 163915, DOI 10.1515/crll.1962.211.95
- J. W. S. Cassels, Arithmetic on curves of genus 1. V. Two counterexamples, J. London Math. Soc. 38 (1963), 244–248. MR 148664, DOI 10.1112/jlms/s1-38.1.244
- J. W. S. Cassels, Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math. 217 (1965), 180–199. MR 179169, DOI 10.1515/crll.1965.217.180
- J. W. S. Cassels, Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, Cambridge, 1991. MR 1144763, DOI 10.1017/CBO9781139172530
- J. W. S. Cassels, Second descents for elliptic curves, J. Reine Angew. Math. 494 (1998), 101–127. Dedicated to Martin Kneser on the occasion of his 70th birthday. MR 1604468, DOI 10.1515/crll.1998.001
- C. Chevalley and A. Weil: Un théorème d’arithmétique sur les courbes algébriques, C.R. Acad. Sci. Paris 195 (1932), 570–572.
- Pete L. Clark, The period-index problem in WC-groups. I. Elliptic curves, J. Number Theory 114 (2005), no. 1, 193–208. MR 2163913, DOI 10.1016/j.jnt.2004.10.001
- Pete L. Clark and Shahed Sharif, Period, index and potential. III, Algebra Number Theory 4 (2010), no. 2, 151–174. MR 2592017, DOI 10.2140/ant.2010.4.151
- J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), no. 3, 223–251. MR 463176, DOI 10.1007/BF01402975
- John E. Cremona, Tom A. Fisher, and Michael Stoll, Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves, Algebra Number Theory 4 (2010), no. 6, 763–820. MR 2728489, DOI 10.2140/ant.2010.4.763
- J.E. Cremona: Elliptic curves database, available online at http://www.warwick.ac.uk/staff/J.E.Cremona/ftp/data/INDEX.html
- J. E. Cremona, T. A. Fisher, C. O’Neil, D. Simon, and M. Stoll, Explicit $n$-descent on elliptic curves. I. Algebra, J. Reine Angew. Math. 615 (2008), 121–155. MR 2384334, DOI 10.1515/CRELLE.2008.012
- B. Creutz: Explicit second $p$-descent on elliptic curves, Ph.D. thesis, Jacobs University (2010).
- Brendan Creutz and Robert L. Miller, Second isogeny descents and the Birch and Swinnerton-Dyer conjectural formula, J. Algebra 372 (2012), 673–701. MR 2990032, DOI 10.1016/j.jalgebra.2012.09.029
- Z. Djabri, Edward F. Schaefer, and N. P. Smart, Computing the $p$-Selmer group of an elliptic curve, Trans. Amer. Math. Soc. 352 (2000), no. 12, 5583–5597. MR 1694286, DOI 10.1090/S0002-9947-00-02535-6
- T.A. Fisher: On $5$ and $7$ descents for elliptic curves, Ph.D. thesis, University of Cambridge (2000).
- Tom Fisher, Some examples of 5 and 7 descent for elliptic curves over $\bf Q$, J. Eur. Math. Soc. (JEMS) 3 (2001), no. 2, 169–201. MR 1831874, DOI 10.1007/s100970100030
- Tom Fisher, Finding rational points on elliptic curves using 6-descent and 12-descent, J. Algebra 320 (2008), no. 2, 853–884. MR 2422319, DOI 10.1016/j.jalgebra.2008.04.007
- V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 435–483. MR 1106906
- Serge Lang, Abelian varieties, Springer-Verlag, New York-Berlin, 1983. Reprint of the 1959 original. MR 713430
- Carl-Erik Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, University of Uppsala, Uppsala, 1940 (German). Thesis. MR 22563
- J. R. Merriman, S. Siksek, and N. P. Smart, Explicit $4$-descents on an elliptic curve, Acta Arith. 77 (1996), no. 4, 385–404. MR 1414518, DOI 10.4064/aa-77-4-385-404
- Robert L. Miller and Michael Stoll, Explicit isogeny descent on elliptic curves, Math. Comp. 82 (2013), no. 281, 513–529. MR 2983034, DOI 10.1090/S0025-5718-2012-02619-6
- L.J. Mordell: On the rational solutions of the indeterminate equations of the 3rd and 4th degrees, Proc. Camb. Phil. Soc. 21 (1922), 179–192.
- Catherine O’Neil, The period-index obstruction for elliptic curves, J. Number Theory 95 (2002), no. 2, 329–339. MR 1924106, DOI 10.1016/S0022-314X(01)92770-2
- Bjorn Poonen and Edward F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math. 488 (1997), 141–188. MR 1465369
- Hans Reichardt, Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen, J. Reine Angew. Math. 184 (1942), 12–18 (German). MR 9381, DOI 10.1515/crll.1942.184.12
- Karl Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25–68. MR 1079839, DOI 10.1007/BF01239508
- Edward F. Schaefer, Class groups and Selmer groups, J. Number Theory 56 (1996), no. 1, 79–114. MR 1370197, DOI 10.1006/jnth.1996.0006
- Edward F. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve, Math. Ann. 310 (1998), no. 3, 447–471. MR 1612262, DOI 10.1007/s002080050156
- Edward F. Schaefer and Michael Stoll, How to do a $p$-descent on an elliptic curve, Trans. Amer. Math. Soc. 356 (2004), no. 3, 1209–1231. MR 2021618, DOI 10.1090/S0002-9947-03-03366-X
- Ernst S. Selmer, The Diophantine equation $ax^3+by^3+cz^3=0$, Acta Math. 85 (1951), 203–362 (1 plate). MR 41871, DOI 10.1007/BF02395746
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237
- Samir Siksek, Descent on Picard groups using functions on curves, Bull. Austral. Math. Soc. 66 (2002), no. 1, 119–124. MR 1922613, DOI 10.1017/S0004972700020736
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Denis Simon, Computing the rank of elliptic curves over number fields, LMS J. Comput. Math. 5 (2002), 7–17. MR 1916919, DOI 10.1112/S1461157000000668
- S. Stamminger: Explicit $8$-descent on elliptic curves, PhD thesis, International University Bremen (2005).
- Michael Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), no. 3, 245–277. MR 1829626, DOI 10.4064/aa98-3-4
- A. Weil: Sur un théorème de Mordell, Bull. Sci. Math. 54 (1930), 182-191.
- A.J. Wiles: Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2) 2 (1995), no. 3, 443–551.
- T. Womack: Explicit descent on elliptic curves, PhD thesis, Nottingham (2003).
- Ju. G. Zarhin, Noncommutative cohomology and Mumford groups, Mat. Zametki 15 (1974), 415–419 (Russian). MR 354612
Bibliographic Information
- Brendan Creutz
- Affiliation: School of Mathematics and Statistics, Carslaw Building F07, University of Sydney, NSW 2006, Australia
- Email: brendan.creutz@sydney.edu.au
- Received by editor(s): August 27, 2011
- Received by editor(s) in revised form: April 3, 2012, and April 23, 2012
- Published electronically: May 23, 2013
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 83 (2014), 365-409
- MSC (2010): Primary 11G05, 11Y50
- DOI: https://doi.org/10.1090/S0025-5718-2013-02713-5
- MathSciNet review: 3120595