Taking roots over high extensions of finite fields
HTML articles powered by AMS MathViewer
- by Javad Doliskani and Éric Schost;
- Math. Comp. 83 (2014), 435-446
- DOI: https://doi.org/10.1090/S0025-5718-2013-02715-9
- Published electronically: May 28, 2013
- PDF | Request permission
Abstract:
We present a new algorithm for computing $m$-th roots over the finite field $\mathbb {F}_q$, where $q = p^n$, with $p$ a prime, and $m$ any positive integer. In the particular case $m=2$, the cost of the new algorithm is an expected $O(\mathsf {M}(n)\log (p) + \mathsf {C}(n)\log (n))$ operations in $\mathbb {F}_p$, where $\mathsf {M}(n)$ and $\mathsf {C}(n)$ are bounds for the cost of polynomial multiplication and modular polynomial composition. Known results give $\mathsf {M}(n) = O(n\log (n) \log \log (n))$ and $\mathsf {C}(n) = O(n^{1.67})$, so our algorithm is subquadratic in $n$.References
- Eric Bach and Jeffrey Shallit, Algorithmic number theory. Vol. 1, Foundations of Computing Series, MIT Press, Cambridge, MA, 1996. Efficient algorithms. MR 1406794
- Paulo S. L. M. Barreto and José Felipe Voloch, Efficient computation of roots in finite fields, Des. Codes Cryptogr. 39 (2006), no. 2, 275–280. MR 2209942, DOI 10.1007/s10623-005-4017-5
- Paulo S. L. M. Barreto, Hae Y. Kim, Ben Lynn, and Michael Scott, Efficient algorithms for pairing-based cryptosystems, Advances in cryptology—CRYPTO 2002, Lecture Notes in Comput. Sci., vol. 2442, Springer, Berlin, 2002, pp. 354–368. MR 2054831, DOI 10.1007/3-540-45708-9_{2}3
- R. P. Brent and H. T. Kung, Fast algorithms for manipulating formal power series, J. Assoc. Comput. Mach. 25 (1978), no. 4, 581–595. MR 520733, DOI 10.1145/322092.322099
- David G. Cantor and Erich Kaltofen, On fast multiplication of polynomials over arbitrary algebras, Acta Inform. 28 (1991), no. 7, 693–701. MR 1129288, DOI 10.1007/BF01178683
- Don Coppersmith and Shmuel Winograd, Matrix multiplication via arithmetic progressions, J. Symbolic Comput. 9 (1990), no. 3, 251–280. MR 1056627, DOI 10.1016/S0747-7171(08)80013-2
- Joachim von zur Gathen and Victor Shoup, Computing Frobenius maps and factoring polynomials, Comput. Complexity 2 (1992), no. 3, 187–224. MR 1220071, DOI 10.1007/BF01272074
- P. Gaudry and É. Schost, Genus 2 point counting over prime fields, Journal of Symbolic Computation 47 (2012), no. 4, 368–400.
- Dong-Guk Han, Dooho Choi, and Howon Kim, Improved computation of square roots in specific finite fields, IEEE Trans. Comput. 58 (2009), no. 2, 188–196. MR 2488396, DOI 10.1109/TC.2008.201
- Xiaohan Huang and Victor Y. Pan, Fast rectangular matrix multiplication and applications, J. Complexity 14 (1998), no. 2, 257–299. MR 1629113, DOI 10.1006/jcom.1998.0476
- Toshiya Itoh and Shigeo Tsujii, A fast algorithm for computing multiplicative inverses in $\textrm {GF}(2^m)$ using normal bases, Inform. and Comput. 78 (1988), no. 3, 171–177. MR 959807, DOI 10.1016/0890-5401(88)90024-7
- Erich Kaltofen and Victor Shoup, Fast polynomial factorization over high algebraic extensions of finite fields, Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (Kihei, HI), ACM, New York, 1997, pp. 184–188. MR 1809986, DOI 10.1145/258726.258777
- Kiran S. Kedlaya and Christopher Umans, Fast polynomial factorization and modular composition, SIAM J. Comput. 40 (2011), no. 6, 1767–1802. MR 2863194, DOI 10.1137/08073408X
- Fanyu Kong, Zhun Cai, Jia Yu, and Daxing Li, Improved generalized Atkin algorithm for computing square roots in finite fields, Inform. Process. Lett. 98 (2006), no. 1, 1–5. MR 2201616, DOI 10.1016/j.ipl.2005.11.015
- Siguna Müller, On the computation of square roots in finite fields, Des. Codes Cryptogr. 31 (2004), no. 3, 301–312. MR 2047886, DOI 10.1023/B:DESI.0000015890.44831.e2
- N. Nishihara, R. Harasawa, Y. Sueyoshi, and A. Kudo, A remark on the computation of cube roots in finite fields, Cryptology ePrint Archive, Report 2009/457, 2009, http://eprint.iacr.org/.
- C. Padró and G. Sáez, Taking cube roots in $\Bbb Z_m$, Appl. Math. Lett. 15 (2002), no. 6, 703–708. MR 1913273, DOI 10.1016/S0893-9659(02)00031-9
- Stephen C. Pohlig and Martin E. Hellman, An improved algorithm for computing logarithms over $\textrm {GF}(p)$ and its cryptographic significance, IEEE Trans. Inform. Theory IT-24 (1978), no. 1, 106–110. MR 484737, DOI 10.1109/tit.1978.1055817
- A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen) 7 (1971), 281–292 (German, with English summary). MR 292344, DOI 10.1007/bf02242355
- Daniel Shanks, Five number-theoretic algorithms, Proceedings of the Second Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972) Congress. Numer., No. VII, Utilitas Math., Winnipeg, MB, 1973, pp. 51–70. MR 371855
- Victor Shoup, Fast construction of irreducible polynomials over finite fields, J. Symbolic Comput. 17 (1994), no. 5, 371–391. MR 1289997, DOI 10.1006/jsco.1994.1025
- —, A library for doing number theory (\uppercase{NTL}), http://www.shoup.net/ntl/, 2009.
- A. Tonelli, Bemerkung über die Auflösung quadratischer Congruenzen, Göttinger Nachrichten (1891), 344–346.
- Gonzalo Tornaría, Square roots modulo $p$, LATIN 2002: Theoretical informatics (Cancun), Lecture Notes in Comput. Sci., vol. 2286, Springer, Berlin, 2002, pp. 430–434. MR 1966140, DOI 10.1007/3-540-45995-2_{3}8
- Christopher Umans, Fast polynomial factorization and modular composition in small characteristic, STOC’08, ACM, New York, 2008, pp. 481–490. MR 2582906, DOI 10.1145/1374376.1374445
- Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, 2nd ed., Cambridge University Press, Cambridge, 2003. MR 2001757
- H. C. Williams, Some algorithms for solving $x^{q}\equiv N$ $(\textrm {mod}\ p)$, Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972) Florida Atlantic University, Boca Raton, FL, 1972, pp. 451–462. MR 364065
- Kenneth S. Williams and Kenneth Hardy, A refinement of H. C. Williams’ $q$th root algorithm, Math. Comp. 61 (1993), no. 203, 475–483. MR 1182249, DOI 10.1090/S0025-5718-1993-1182249-0
Bibliographic Information
- Javad Doliskani
- Affiliation: Department of computer Science, University of Western Ontario
- MR Author ID: 1041035
- Email: jdoliska@uwo.ca
- Éric Schost
- Affiliation: Department of computer Science, University of Western Ontario
- Email: eschost@uwo.ca
- Received by editor(s): September 21, 2011
- Received by editor(s) in revised form: April 29, 2012
- Published electronically: May 28, 2013
- Additional Notes: We thank NSERC and the Canada Research Chairs program for financial support. We also thank the referee for very helpful remarks.
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 83 (2014), 435-446
- MSC (2010): Primary 11Y16, 12Y05; Secondary 68W30
- DOI: https://doi.org/10.1090/S0025-5718-2013-02715-9
- MathSciNet review: 3120598