Improved results on the Mertens conjecture
HTML articles powered by AMS MathViewer
- by Yannick Saouter and Herman te Riele;
- Math. Comp. 83 (2014), 421-433
- DOI: https://doi.org/10.1090/S0025-5718-2013-02716-0
- Published electronically: May 28, 2013
- PDF | Request permission
Abstract:
In this article, we study the Mertens conjecture. We revisit and improve the original constructive disproof of János Pintz. We obtain a new lower bound for the minimal counterexample and new numerical results for this conjecture.References
- Bejoy K. Choudhury, The Riemann zeta-function and its derivatives, Proc. Roy. Soc. London Ser. A 450 (1995), no. 1940, 477–499. MR 1356175, DOI 10.1098/rspa.1995.0096
- A. Decker. Die Widerlegung der Mertens-Vermutung. Mathematisches Institut, Mathematisch-Naturewissenschaftliche Fakultät der Rheinischen Friedrich-Willems-Universität Bonn, Oct. 2010.
- Jerzy Kaczorowski, Results on the Möbius function, J. Lond. Math. Soc. (2) 75 (2007), no. 2, 509–521. MR 2340242, DOI 10.1112/jlms/jdm006
- Tadej Kotnik and Herman te Riele, The Mertens conjecture revisited, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 4076, Springer, Berlin, 2006, pp. 156–167. MR 2282922, DOI 10.1007/11792086_{1}2
- A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534. MR 682664, DOI 10.1007/BF01457454
- F. Mertens. Über eine zahlentheoretische Funktion. Sitzungberichte Akad. Wiss. Wien IIa, (106), 1897.
- A. M. Odlyzko and H. J. J. te Riele, Disproof of the Mertens conjecture, J. Reine Angew. Math. 357 (1985), 138–160. MR 783538, DOI 10.1515/crll.1985.357.138
- J. Pintz, An effective disproof of the Mertens conjecture, Astérisque 147-148 (1987), 325–333, 346. Journées arithmétiques de Besançon (Besançon, 1985). MR 891440
- J. Barkley Rosser, J. M. Yohe, and Lowell Schoenfeld, Rigorous computation and the zeros of the Riemann zeta-function. (With discussion), Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 70–76. MR 258245
- Yannick Saouter and Patrick Demichel, A sharp region where $\pi (x)-\textrm {li}(x)$ is positive, Math. Comp. 79 (2010), no. 272, 2395–2405. MR 2684372, DOI 10.1090/S0025-5718-10-02351-3
Bibliographic Information
- Yannick Saouter
- Affiliation: Institut Telecom Brest, Bretagne
- Email: Yannick.Saouter@enst-bretagne.fr
- Herman te Riele
- Affiliation: CWI, Amsterdam, Netherlands
- Email: Herman.te.Riele@cwi.nl
- Received by editor(s): December 14, 2011
- Received by editor(s) in revised form: April 26, 2012, and May 9, 2012
- Published electronically: May 28, 2013
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 83 (2014), 421-433
- MSC (2010): Primary 11-04, 11A15, 11M26, 11Y11, 11Y35
- DOI: https://doi.org/10.1090/S0025-5718-2013-02716-0
- MathSciNet review: 3120597