Computing canonical heights using arithmetic intersection theory
HTML articles powered by AMS MathViewer
- by Jan Steffen Müller;
- Math. Comp. 83 (2014), 311-336
- DOI: https://doi.org/10.1090/S0025-5718-2013-02719-6
- Published electronically: June 14, 2013
- PDF | Request permission
Abstract:
For several applications in the arithmetic of abelian varieties it is important to compute canonical heights. Following Faltings and Hriljac, we show how the canonical height of a point on the Jacobian of a smooth projective curve can be computed using arithmetic intersection theory on a regular model of the curve in practice. In the case of hyperelliptic curves we present a complete algorithm that has been implemented in Magma. Several examples are computed and the behavior of the running time is discussed.References
- William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, Graduate Studies in Mathematics, vol. 3, American Mathematical Society, Providence, RI, 1994. MR 1287608, DOI 10.1090/gsm/003
- M. Artin, Lipman’s proof of resolution of singularities for surfaces, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 267–287. MR 861980
- J. Balakrishnan, Coleman Integration for Hyperelliptic Curves: Algorithms and Applications, PhD thesis, MIT (2011).
- J. Balakrishnan and A. Besser, Local heights on hyperelliptic curves, Int. Math. Res. Notices. (2011), doi: 10.1093/imrn/rnr111.
- Bernard Deconinck, Matthias Heil, Alexander Bobenko, Mark van Hoeij, and Marcus Schmies, Computing Riemann theta functions, Math. Comp. 73 (2004), no. 247, 1417–1442. MR 2047094, DOI 10.1090/S0025-5718-03-01609-0
- David G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math. Comp. 48 (1987), no. 177, 95–101. MR 866101, DOI 10.1090/S0025-5718-1987-0866101-0
- V. Cossart, U. Jannsen and S. Saito, Canonical embedded and non-embedded resolution of singularities for excellent two-dimensional schemes, Preprint (2009). arXiv:math/0905.2191v2 [math.AG]
- David A. Cox and Steven Zucker, Intersection numbers of sections of elliptic surfaces, Invent. Math. 53 (1979), no. 1, 1–44. MR 538682, DOI 10.1007/BF01403189
- Robert F. Coleman and Benedict H. Gross, $p$-adic heights on curves, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 73–81. MR 1097610, DOI 10.2969/aspm/01710073
- Bernard Deconinck and Mark van Hoeij, Computing Riemann matrices of algebraic curves, Phys. D 152/153 (2001), 28–46. Advances in nonlinear mathematics and science. MR 1837895, DOI 10.1016/S0167-2789(01)00156-7
- Bernard Deconinck and Matthew S. Patterson, Computing the Abel map, Phys. D 237 (2008), no. 24, 3214–3232. MR 2477016, DOI 10.1016/j.physd.2008.08.007
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Gerd Faltings, Calculus on arithmetic surfaces, Ann. of Math. (2) 119 (1984), no. 2, 387–424. MR 740897, DOI 10.2307/2007043
- Jean-Charles Faugére, A new efficient algorithm for computing Gröbner bases $(F_4)$, J. Pure Appl. Algebra 139 (1999), no. 1-3, 61–88. Effective methods in algebraic geometry (Saint-Malo, 1998). MR 1700538, DOI 10.1016/S0022-4049(99)00005-5
- E. V. Flynn and N. P. Smart, Canonical heights on the Jacobians of curves of genus $2$ and the infinite descent, Acta Arith. 79 (1997), no. 4, 333–352. MR 1450916, DOI 10.4064/aa-79-4-333-352
- E. Victor Flynn, Franck Leprévost, Edward F. Schaefer, William A. Stein, Michael Stoll, and Joseph L. Wetherell, Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves, Math. Comp. 70 (2001), no. 236, 1675–1697. MR 1836926, DOI 10.1090/S0025-5718-01-01320-5
- Benedict H. Gross, Local heights on curves, Arithmetic geometry (Storrs, Conn., 1984) Springer, New York, 1986, pp. 327–339. MR 861983
- A. Hashemi and D. Lazard, Almost polynomial complexity for zero-dimensional Gröbner bases, in Proceedings of the 7th Asian Symposium on Computer Mathematics (ASCM’2005), Seoul, Korea, 16–21 (2005).
- F. Hess, Computing Riemann-Roch spaces in algebraic function fields and related topics, J. Symbolic Comput. 33 (2002), no. 4, 425–445. MR 1890579, DOI 10.1006/jsco.2001.0513
- D. Holmes, Computing Néron-Tate heights of points on hyperelliptic Jacobians, J. Number Theory (2012), doi:10.1016/j.jnt.2012.01.002
- D. Holmes, Néron-Tate heights on the Jacobians of high-genus hyperelliptic curves, PhD thesis, University of Warwick, 2012.
- Paul Hriljac, Heights and Arakelov’s intersection theory, Amer. J. Math. 107 (1985), no. 1, 23–38. MR 778087, DOI 10.2307/2374455
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605, DOI 10.1007/978-1-4757-1810-2
- Serge Lang, Introduction to Arakelov theory, Springer-Verlag, New York, 1988. MR 969124, DOI 10.1007/978-1-4612-1031-3
- Qing Liu, Algebraic geometry and arithmetic curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, Oxford, 2002. Translated from the French by Reinie Erné; Oxford Science Publications. MR 1917232
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 266911
- B. Mazur and J. Tate, Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 195–237. MR 717595
- J.S. Müller, Computing canonical heights on Jacobians, PhD thesis, Universität Bayreuth (2010).
- http://www.math.uni-hamburg.de/home/js.mueller/\#code
- A. Néron, Quasi-fonctions et hauteurs sur les variétés abéliennes, Ann. of Math. (2) 82 (1965), 249–331 (French). MR 179173, DOI 10.2307/1970644
- Sebastian Pauli, Factoring polynomials over local fields, J. Symbolic Comput. 32 (2001), no. 5, 533–547. MR 1858009, DOI 10.1006/jsco.2001.0493
- F. Pazuki, Minoration de la hauteur de Néron-Tate sur les variétés abéliennes: sur la conjecture de Lang et Silverman, PhD thesis, Université Bordeaux 1 (2008).
- Bjorn Poonen and Edward F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math. 488 (1997), 141–188. MR 1465369
- J. Romero-Valencia and A.G. Zamora, Explicit constructions for genus 3 Jacobians, Preprint (2009), arXiv:math/0904.4537v1[math.AG].
- Peter Schneider, $p$-adic height pairings. I, Invent. Math. 69 (1982), no. 3, 401–409. MR 679765, DOI 10.1007/BF01389362
- Joseph H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), no. 183, 339–358. MR 942161, DOI 10.1090/S0025-5718-1988-0942161-4
- Michael Stoll, On the height constant for curves of genus two. II, Acta Arith. 104 (2002), no. 2, 165–182. MR 1914251, DOI 10.4064/aa104-2-6
- Michael Stoll, Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math. 11 (2008), 367–380. MR 2465796, DOI 10.1112/S1461157000000644
- M. Stoll, Explicit Kummer varieties for hyperelliptic curves of genus three, to appear. See also http://www.mathe2.uni-bayreuth.de/stoll/talks/Luminy2012.pdf.
- http://www.math.lsu.edu/~wamelen/genus2.html
- M. Wagner, Über Korrespondenzen zwischen algebraischen Funktionenkörpern, PhD thesis, TU Berlin (2009).
Bibliographic Information
- Jan Steffen Müller
- Affiliation: Fachbereich Mathematik, Universität Hamburg
- MR Author ID: 895560
- Email: jan.steffen.mueller@uni-hamburg.de
- Received by editor(s): June 29, 2011
- Received by editor(s) in revised form: January 27, 2012, and March 5, 2012
- Published electronically: June 14, 2013
- Additional Notes: This work was supported by DFG-grant STO 299/5-1
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 83 (2014), 311-336
- MSC (2010): Primary 11G50; Secondary 11G10, 11G30, 14G40
- DOI: https://doi.org/10.1090/S0025-5718-2013-02719-6
- MathSciNet review: 3120591