An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow
HTML articles powered by AMS MathViewer
- by Clément Cancès, Iuliu Sorin Pop and Martin Vohralík;
- Math. Comp. 83 (2014), 153-188
- DOI: https://doi.org/10.1090/S0025-5718-2013-02723-8
- Published electronically: June 28, 2013
- PDF | Request permission
Abstract:
In this paper we derive an a posteriori error estimate for the numerical approximation of the solution of a system modeling the flow of two incompressible and immiscible fluids in a porous medium. We take into account the capillary pressure, which leads to a coupled system of two equations: parabolic and elliptic. The parabolic equation may become degenerate, i.e., the nonlinear diffusion coefficient may vanish over regions that are not known a priori. We first show that, under appropriate assumptions, the energy-type norm differences between the exact and the approximate nonwetting phase saturations, the global pressures, and the Kirchhoff transforms of the nonwetting phase saturations can be bounded by the dual norm of the residuals. We then bound the dual norm of the residuals by fully computable a posteriori estimators. Our analysis covers a large class of conforming, vertex-centered finite volume-type discretizations with fully implicit time stepping. As an example, we focus here on two approaches: a “mathematical” scheme derived from the weak formulation, and a phase-by-phase upstream weighting “engineering” scheme. Finally, we show how the different error components, namely the space discretization error, the time discretization error, the linearization error, the algebraic solver error, and the quadrature error can be distinguished and used for making the calculations efficient.References
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308, DOI 10.1002/9781118032824
- Georgios Akrivis, Charalambos Makridakis, and Ricardo H. Nochetto, A posteriori error estimates for the Crank-Nicolson method for parabolic equations, Math. Comp. 75 (2006), no. 254, 511–531. MR 2196979, DOI 10.1090/S0025-5718-05-01800-4
- Hans Wilhelm Alt and Stephan Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183 (1983), no. 3, 311–341. MR 706391, DOI 10.1007/BF01176474
- Lutz Angermann, Peter Knabner, and Kathrin Thiele, An error estimator for a finite volume discretization of density driven flow in porous media, Proceedings of the International Centre for Mathematical Sciences Conference on Grid Adaptation in Computational PDEs: Theory and Applications (Edinburgh, 1996), 1998, pp. 179–191. MR 1602860, DOI 10.1016/S0168-9274(97)00084-6
- S. N. Antontsev, A. V. Kazhikhov, and V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, vol. 22, North-Holland Publishing Co., Amsterdam, 1990. Translated from the Russian. MR 1035212
- Todd Arbogast, The existence of weak solutions to single porosity and simple dual-porosity models of two-phase incompressible flow, Nonlinear Anal. 19 (1992), no. 11, 1009–1031. MR 1194142, DOI 10.1016/0362-546X(92)90121-T
- J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, New York, 1972.
- J. Bear and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Media, vol. 4 of Theory and Applications of Transport in Porous Media, Kluwer Academic Publishers, Dordrecht, Holland, 1990.
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- Clément Cancès and Thierry Gallouët, On the time continuity of entropy solutions, J. Evol. Equ. 11 (2011), no. 1, 43–55. MR 2780572, DOI 10.1007/s00028-010-0080-0
- José Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal. 147 (1999), no. 4, 269–361. MR 1709116, DOI 10.1007/s002050050152
- G. Chavent and J. Jaffré, Mathematical models and finite elements for reservoir simulation, North-Holland, Amsterdam, 1986. Studies in Mathematics and Its Applications, Vol. 17.
- Yanping Chen and Wenbin Liu, A posteriori error estimates of mixed methods for miscible displacement problems, Internat. J. Numer. Methods Engrg. 73 (2008), no. 3, 331–343. MR 2382047, DOI 10.1002/nme.2075
- Zhangxin Chen, Degenerate two-phase incompressible flow. I. Existence, uniqueness and regularity of a weak solution, J. Differential Equations 171 (2001), no. 2, 203–232. MR 1818648, DOI 10.1006/jdeq.2000.3848
- Zhangxin Chen, Degenerate two-phase incompressible flow. II. Regularity, stability and stabilization, J. Differential Equations 186 (2002), no. 2, 345–376. MR 1942213, DOI 10.1016/S0022-0396(02)00027-X
- Zhangxin Chen and Richard E. Ewing, Degenerate two-phase incompressible flow. III. Sharp error estimates, Numer. Math. 90 (2001), no. 2, 215–240. MR 1872726, DOI 10.1007/s002110100291
- Z. Chen and R. E. Ewing, Degenerate two-phase incompressible flow. IV. Local refinement and domain decomposition, J. Sci. Comput. 18 (2003), no. 3, 329–360. MR 1967254, DOI 10.1023/A:1022673427893
- Zhiming Chen and Guanghua Ji, Sharp $L^1$ a posteriori error analysis for nonlinear convection-diffusion problems, Math. Comp. 75 (2006), no. 253, 43–71. MR 2176389, DOI 10.1090/S0025-5718-05-01778-3
- Javier de Frutos, Bosco García-Archilla, and Julia Novo, A posteriori error estimates for fully discrete nonlinear parabolic problems, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 35-36, 3462–3474. MR 2335276, DOI 10.1016/j.cma.2007.03.015
- Daniele A. Di Pietro, Martin Vohralík, and Carole Widmer, An a posteriori error estimator for a finite volume discretization of the two-phase flow, Finite volumes for complex applications VI. Problems & perspectives. Volume 1, 2, Springer Proc. Math., vol. 4, Springer, Heidelberg, 2011, pp. 341–349. MR 2882311, DOI 10.1007/978-3-642-20671-9_{3}6
- D. A. Di Pietro, M. Vohralík, and S. Yousef, Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem. HAL Preprint 00690862, submitted for publication, 2012.
- Vít Dolejší, Alexandre Ern, and Martin Vohralík, A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems, SIAM J. Numer. Anal. 51 (2013), no. 2, 773–793. MR 3033032, DOI 10.1137/110859282
- Linda El Alaoui, Alexandre Ern, and Martin Vohralík, Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, Comput. Methods Appl. Mech. Engrg. 200 (2011), no. 37-40, 2782–2795. MR 2811915, DOI 10.1016/j.cma.2010.03.024
- Kenneth Eriksson and Claes Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems, SIAM J. Numer. Anal. 32 (1995), no. 6, 1729–1749. MR 1360457, DOI 10.1137/0732078
- Alexandre Ern and Martin Vohralík, A posteriori error estimation based on potential and flux reconstruction for the heat equation, SIAM J. Numer. Anal. 48 (2010), no. 1, 198–223. MR 2608366, DOI 10.1137/090759008
- A. Ern and M. Vohralík, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput., Accepted for publication, 2013.
- R. Eymard and T. Gallouët, Convergence d’un schéma de type éléments finis–volumes finis pour un système formé d’une équation elliptique et d’une équation hyperbolique, RAIRO Modél. Math. Anal. Numér. 27 (1993), no. 7, 843–861 (French, with English and French summaries). MR 1249455, DOI 10.1051/m2an/1993270708431
- Robert Eymard, Thierry Gallouët, and Raphaèle Herbin, Finite volume methods, Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020. MR 1804748, DOI 10.1016/S1570-8659(00)07005-8
- Robert Eymard, Raphaèle Herbin, and Anthony Michel, Mathematical study of a petroleum-engineering scheme, M2AN Math. Model. Numer. Anal. 37 (2003), no. 6, 937–972. MR 2026403, DOI 10.1051/m2an:2003062
- L. Gallimard, P. Ladevèze, and J. P. Pelle, Error estimation and time–space parameters optimization for FEM non-linear computation, Computers & Structures, 64 (1997), pp. 145–156.
- Ralf Huber and Rainer Helmig, Node-centered finite volume discretizations for the numerical simulation of multiphase flow in heterogeneous porous media, Comput. Geosci. 4 (2000), no. 2, 141–164. MR 1800561, DOI 10.1023/A:1011559916309
- W. Jäger and J. Kačur, Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes, RAIRO Modél. Math. Anal. Numér. 29 (1995), no. 5, 605–627 (English, with English and French summaries). MR 1352864, DOI 10.1051/m2an/1995290506051
- Pavel Jiránek, Zdeněk Strakoš, and Martin Vohralík, A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput. 32 (2010), no. 3, 1567–1590. MR 2652091, DOI 10.1137/08073706X
- Dietmar Kroener and Stephan Luckhaus, Flow of oil and water in a porous medium, J. Differential Equations 55 (1984), no. 2, 276–288. MR 764127, DOI 10.1016/0022-0396(84)90084-6
- S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.) 81(123) (1970), 228–255 (Russian). MR 267257
- Anthony Michel, A finite volume scheme for two-phase immiscible flow in porous media, SIAM J. Numer. Anal. 41 (2003), no. 4, 1301–1317. MR 2034882, DOI 10.1137/S0036142900382739
- P. Neittaanmäki and S. Repin, Reliable methods for computer simulation, Studies in Mathematics and its Applications, vol. 33, Elsevier Science B.V., Amsterdam, 2004. Error control and a posteriori estimates. MR 2095603
- Ricardo H. Nochetto, Giuseppe Savaré, and Claudio Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math. 53 (2000), no. 5, 525–589. MR 1737503, DOI 10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M
- Ricardo H. Nochetto and Claudio Verdi, Approximation of degenerate parabolic problems using numerical integration, SIAM J. Numer. Anal. 25 (1988), no. 4, 784–814. MR 954786, DOI 10.1137/0725046
- M. Ohlberger, A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations, Numer. Math. 87 (2001), no. 4, 737–761. MR 1815733, DOI 10.1007/PL00005431
- Mario Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations, M2AN Math. Model. Numer. Anal. 35 (2001), no. 2, 355–387. MR 1825703, DOI 10.1051/m2an:2001119
- Felix Otto, $L^1$-contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations 131 (1996), no. 1, 20–38. MR 1415045, DOI 10.1006/jdeq.1996.0155
- Iuliu Sorin Pop, Error estimates for a time discretization method for the Richards’ equation, Comput. Geosci. 6 (2002), no. 2, 141–160. MR 1926564, DOI 10.1023/A:1019936917350
- I. S. Pop, F. Radu, and P. Knabner, Mixed finite elements for the Richards’ equation: linearization procedure, J. Comput. Appl. Math. 168 (2004), no. 1-2, 365–373. MR 2079503, DOI 10.1016/j.cam.2003.04.008
- W. Prager and J. L. Synge, Approximations in elasticity based on the concept of function space, Quart. Appl. Math. 5 (1947), 241–269. MR 25902, DOI 10.1090/S0033-569X-1947-25902-8
- Alfio Quarteroni and Alberto Valli, Numerical approximation of partial differential equations, Springer Series in Computational Mathematics, vol. 23, Springer-Verlag, Berlin, 1994. MR 1299729
- Florin A. Radu, Iuliu Sorin Pop, and Peter Knabner, Newton-type methods for the mixed finite element discretization of some degenerate parabolic equations, Numerical mathematics and advanced applications, Springer, Berlin, 2006, pp. 1192–1200. MR 2303752, DOI 10.1007/978-3-540-34288-5_{1}20
- Florin A. Radu, Iuliu Sorin Pop, and Peter Knabner, Error estimates for a mixed finite element discretization of some degenerate parabolic equations, Numer. Math. 109 (2008), no. 2, 285–311. MR 2385655, DOI 10.1007/s00211-008-0139-9
- Sergey Repin, A posteriori estimates for partial differential equations, Radon Series on Computational and Applied Mathematics, vol. 4, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. MR 2458008, DOI 10.1515/9783110203042
- J. E. Roberts and J.-M. Thomas, Mixed and hybrid methods, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 523–639. MR 1115239
- R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Teubner-Wiley, Stuttgart, 1996.
- R. Verfürth, A posteriori error estimates for nonlinear problems: $L^r(0,T;W^{1,\rho }(\Omega ))$-error estimates for finite element discretizations of parabolic equations, Numer. Methods Partial Differential Equations 14 (1998), no. 4, 487–518. MR 1627578, DOI 10.1002/(SICI)1098-2426(199807)14:4<487::AID-NUM4>3.0.CO;2-G
- R. Verfürth, Robust a posteriori error estimates for stationary convection-diffusion equations, SIAM J. Numer. Anal. 43 (2005), no. 4, 1766–1782. MR 2182149, DOI 10.1137/040604261
- Martin Vohralík, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput. 46 (2011), no. 3, 397–438. MR 2765501, DOI 10.1007/s10915-010-9410-1
- M. Vohralík and M. F. Wheeler, A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows, HAL Preprint 00633594v2, submitted for publication, 2013.
Bibliographic Information
- Clément Cancès
- Affiliation: LJLL – UPMC Paris 06, Boite Courrier 187, 4 place Jussieu, 75005 Paris, France
- Email: cances@ann.jussieu.fr
- Iuliu Sorin Pop
- Affiliation: Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600MB, Eindhoven, the Netherlands
- Email: i.pop@tue.nl
- Martin Vohralík
- Affiliation: LJLL – UPMC Paris 06, Boite Courrier 187, 4 place Jussieu, 75005 Paris, France
- Address at time of publication: INRIA Paris-Rocquencourt, B.P. 105, 78153 Le Chesnay, France
- ORCID: 0000-0002-8838-7689
- Email: martin.vohralik@inria.fr
- Received by editor(s): September 13, 2011
- Received by editor(s) in revised form: April 25, 2012
- Published electronically: June 28, 2013
- Additional Notes: This work was partly supported by the Groupement MoMaS (PACEN/CNRS, ANDRA, BRGM, CEA, EdF, IRSN) and by the ERT project “Enhanced oil recovery and geological sequestration of $\mathrm {CO}_2$: mesh adaptivity, a posteriori error control, and other advanced techniques” (LJLL/IFPEN)
- © Copyright 2013 American Mathematical Society
- Journal: Math. Comp. 83 (2014), 153-188
- MSC (2010): Primary 65M15, 76S05, 76T99, 65M08
- DOI: https://doi.org/10.1090/S0025-5718-2013-02723-8
- MathSciNet review: 3120585