Adaptive multiresolution discontinuous Galerkin schemes for conservation laws
HTML articles powered by AMS MathViewer
- by Nune Hovhannisyan, Siegfried Müller and Roland Schäfer;
- Math. Comp. 83 (2014), 113-151
- DOI: https://doi.org/10.1090/S0025-5718-2013-02732-9
- Published electronically: July 10, 2013
- PDF | Request permission
Abstract:
A multiresolution-based adaptation concept is proposed that aims at accelerating discontinuous Galerkin schemes applied to non-linear hyperbolic conservation laws. Opposite to standard adaptation concepts no error estimates are needed to tag mesh elements for refinement. Instead of this, a multiresolution analysis is performed on a hierarchy of nested grids for the data given on a uniformly refined mesh. This provides difference information between successive refinement levels that may become negligibly small in regions where the solution is locally smooth. Applying hard thresholding the data are highly compressed and local grid adaptation is triggered by the remaining significant coefficients. A central mathematical problem addressed in this work is then to show at least for scalar one-dimensional problems that choosing an appropriate threshold value, the adaptive solution is of the same accuracy as the reference solution on a uniformly refined mesh. Numerical comparisons demonstrate the efficiency of the concept.References
- Slimane Adjerid, Karen D. Devine, Joseph E. Flaherty, and Lilia Krivodonova, A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 11-12, 1097–1112. MR 1877682, DOI 10.1016/S0045-7825(01)00318-8
- Bradley K. Alpert, A class of bases in $L^2$ for the sparse representation of integral operators, SIAM J. Math. Anal. 24 (1993), no. 1, 246–262. MR 1199538, DOI 10.1137/0524016
- B. Alpert, G. Beylkin, D. Gines, and L. Vozovoi, Adaptive solution of partial differential equations in multiwavelet bases, J. Comput. Phys. 182 (2002), no. 1, 149–190. MR 1936805, DOI 10.1006/jcph.2002.7160
- Richard M. Beam and Robert F. Warming, Multiresolution analysis and supercompact multiwavelets, SIAM J. Sci. Comput. 22 (2000), no. 4, 1238–1268. MR 1787295, DOI 10.1137/S1064827596311906
- Kim S. Bey and J. Tinsley Oden, $hp$-version discontinuous Galerkin methods for hyperbolic conservation laws, Comput. Methods Appl. Mech. Engrg. 133 (1996), no. 3-4, 259–286. MR 1399638, DOI 10.1016/0045-7825(95)00944-2
- F. Bramkamp, Ph. Lamby, and S. Müller, An adaptive multiscale finite volume solver for unsteady and steady state flow computations, J. Comput. Phys. 197 (2004), no. 2, 460–490. MR 2063903, DOI 10.1016/j.jcp.2003.12.005
- Kolja Brix, Ralf Massjung, and Alexander Voss, Refinement and connectivity algorithms for adaptive discontinuous Galerkin methods, SIAM J. Sci. Comput. 33 (2011), no. 1, 66–101. MR 2783187, DOI 10.1137/090767418
- Bernardo Cockburn, Quasimonotone schemes for scalar conservation laws. I, SIAM J. Numer. Anal. 26 (1989), no. 6, 1325–1341. MR 1025091, DOI 10.1137/0726077
- Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp. 54 (1990), no. 190, 545–581. MR 1010597, DOI 10.1090/S0025-5718-1990-1010597-0
- Bernardo Cockburn, George E. Karniadakis, and Chi-Wang Shu, The development of discontinuous Galerkin methods, Discontinuous Galerkin methods (Newport, RI, 1999) Lect. Notes Comput. Sci. Eng., vol. 11, Springer, Berlin, 2000, pp. 3–50. MR 1842161, DOI 10.1007/978-3-642-59721-3_{1}
- Bernardo Cockburn, San Yih Lin, and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, J. Comput. Phys. 84 (1989), no. 1, 90–113. MR 1015355, DOI 10.1016/0021-9991(89)90183-6
- Bernardo Cockburn and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp. 52 (1989), no. 186, 411–435. MR 983311, DOI 10.1090/S0025-5718-1989-0983311-4
- Bernardo Cockburn and Chi-Wang Shu, The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 3, 337–361 (English, with French summary). MR 1103092, DOI 10.1051/m2an/1991250303371
- Bernardo Cockburn and Chi-Wang Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, J. Comput. Phys. 141 (1998), no. 2, 199–224. MR 1619652, DOI 10.1006/jcph.1998.5892
- Bernardo Cockburn and Chi-Wang Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (2001), no. 3, 173–261. MR 1873283, DOI 10.1023/A:1012873910884
- Albert Cohen, Numerical analysis of wavelet methods, Studies in Mathematics and its Applications, vol. 32, North-Holland Publishing Co., Amsterdam, 2003. MR 1990555
- A. Cohen, Ingrid Daubechies, and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), no. 5, 485–560. MR 1162365, DOI 10.1002/cpa.3160450502
- Albert Cohen, Sidi Mahmoud Kaber, Siegfried Müller, and Marie Postel, Fully adaptive multiresolution finite volume schemes for conservation laws, Math. Comp. 72 (2003), no. 241, 183–225. MR 1933818, DOI 10.1090/S0025-5718-01-01391-6
- F. Coquel, Y. Maday, S. Müller, M. Postel, and Q. H. Tran (eds.), Multiresolution and adaptive methods for convection-dominated problems, ESAIM Proceedings, vol. 29, EDP Sciences, Les Ulis, 2009. MR 2766462
- Wolfgang Dahmen, Birgit Gottschlich-Müller, and Siegfried Müller, Multiresolution schemes for conservation laws, Numer. Math. 88 (2001), no. 3, 399–443. MR 1835465, DOI 10.1007/s211-001-8009-3
- Andreas Dedner, Charalambos Makridakis, and Mario Ohlberger, Error control for a class of Runge-Kutta discontinuous Galerkin methods for nonlinear conservation laws, SIAM J. Numer. Anal. 45 (2007), no. 2, 514–538. MR 2300285, DOI 10.1137/050624248
- Edwige Godlewski and Pierre-Arnaud Raviart, Hyperbolic systems of conservation laws, Mathématiques & Applications (Paris) [Mathematics and Applications], vol. 3/4, Ellipses, Paris, 1991. MR 1304494
- Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor, Strong stability-preserving high-order time discretization methods, SIAM Rev. 43 (2001), no. 1, 89–112. MR 1854647, DOI 10.1137/S003614450036757X
- Ami Harten, Multiresolution representation of data: a general framework, SIAM J. Numer. Anal. 33 (1996), no. 3, 1205–1256. MR 1393910, DOI 10.1137/0733060
- Ralf Hartmann and Paul Houston, Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws, SIAM J. Sci. Comput. 24 (2002), no. 3, 979–1004. MR 1950521, DOI 10.1137/S1064827501389084
- Ralf Hartmann and Paul Houston, Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations, J. Comput. Phys. 183 (2002), no. 2, 508–532. MR 1947780, DOI 10.1006/jcph.2002.7206
- Paul Houston, Bill Senior, and Endre Süli, $hp$-discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity, Internat. J. Numer. Methods Fluids 40 (2002), no. 1-2, 153–169. ICFD Conference on Numerical Methods for Fluid Dynamics (Oxford, 2001). MR 1928323, DOI 10.1002/fld.271
- Nune Hovhannisyan and Siegfried Müller, On the stability of fully adaptive multiscale schemes for conservation laws using approximate flux and source reconstruction strategies, IMA J. Numer. Anal. 30 (2010), no. 4, 1256–1295. MR 2727824, DOI 10.1093/imanum/drp010
- F. Iacono, G. May, S. Müller, and R. Schäfer. A high-order discontinuous Galerkin discretization with multiwavelet-based grid adaptation for compressible flows. AICES Preprint AICES-2011/08-1, RWTH Aachen, 2011.
- Fritz Keinert, Wavelets and multiwavelets, Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, FL, 2004. MR 2035222
- Dietmar Kröner, Numerical schemes for conservation laws, Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley & Sons, Ltd., Chichester; B. G. Teubner, Stuttgart, 1997. MR 1437144
- S.N. Kruzhkov. First order quasilinear equations in several independent variables. Math. USSR Sbornik, 10:217–243, 1970.
- Randall J. LeVeque, Finite volume methods for hyperbolic problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002. MR 1925043, DOI 10.1017/CBO9780511791253
- S. G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Machine Intell., 11(7):674–693, 1989.
- Siegfried Müller, Adaptive multiscale schemes for conservation laws, Lecture Notes in Computational Science and Engineering, vol. 27, Springer-Verlag, Berlin, 2003. MR 1952371, DOI 10.1007/978-3-642-18164-1
- Siegfried Müller, Multiresolution schemes for conservation laws, Multiscale, nonlinear and adaptive approximation, Springer, Berlin, 2009, pp. 379–408. MR 2648379, DOI 10.1007/978-3-642-03413-8_{1}1
- S. Müller and A. Voss. A Manual for the Template Class Library igpm_t_lib. IGPM–Report 197, RWTH Aachen, 2000.
- O. A. Oleĭnik, Discontinuous solutions of non-linear differential equations, Amer. Math. Soc. Transl. (2) 26 (1963), 95–172. MR 151737, DOI 10.1090/trans2/026/05
- Stanley Osher, Convergence of generalized MUSCL schemes, SIAM J. Numer. Anal. 22 (1985), no. 5, 947–961. MR 799122, DOI 10.1137/0722057
- W.H. Reed and T.R. Hill. Triangular mesh methods for neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973.
- Jean-François Remacle, Joseph E. Flaherty, and Mark S. Shephard, An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems, SIAM Rev. 45 (2003), no. 1, 53–72. MR 1981254, DOI 10.1137/S00361445023830
- R. Schäfer. Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Ph.D. thesis, RWTH Aachen, 2011.
- Chi-Wang Shu and Stanley Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988), no. 2, 439–471. MR 954915, DOI 10.1016/0021-9991(88)90177-5
- Vasily V. Strela, Multiwavelets: Theory and applications, ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2716668
- T. Tang and Zhen Huan Teng, Error bounds for fractional step methods for conservation laws with source terms, SIAM J. Numer. Anal. 32 (1995), no. 1, 110–127. MR 1313707, DOI 10.1137/0732004
- Li Wang and Dimitri J. Mavriplis, Adjoint-based $h$-$p$ adaptive discontinuous Galerkin methods for the 2D compressible Euler equations, J. Comput. Phys. 228 (2009), no. 20, 7643–7661. MR 2561836, DOI 10.1016/j.jcp.2009.07.012
- Robert F. Warming and Richard M. Beam, Discrete multiresolution analysis using Hermite interpolation: biorthogonal multiwavelets, SIAM J. Sci. Comput. 22 (2000), no. 4, 1269–1317. MR 1787296, DOI 10.1137/S1064827597315236
Bibliographic Information
- Nune Hovhannisyan
- Affiliation: Faculty of Informatics and Applied Mathematics, Alex Manoogian 1, Yerevan 0025, Armenia
- Email: alnune03@yahoo.com
- Siegfried Müller
- Affiliation: Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
- Email: mueller@igpm.rwth-aachen.de
- Roland Schäfer
- Affiliation: Institut für Geometrie und Praktische Mathematik, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany
- Email: schaefer@igpm.rwth-aachen.de
- Received by editor(s): September 13, 2010
- Received by editor(s) in revised form: October 20, 2011, March 6, 2012, and June 19, 2012
- Published electronically: July 10, 2013
- Additional Notes: This work has been performed with funding by the Deutsche Forschungsgemeinschaft in the Collaborative Research Center SFB 401 “Flow Modulation and Fluid-Structure Interaction at Airplane Wings” of RWTH Aachen University, Germany.
- © Copyright 2013
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 83 (2014), 113-151
- MSC (2010): Primary 35L65, 65M12, 65M60, 65T60, 74S05
- DOI: https://doi.org/10.1090/S0025-5718-2013-02732-9
- MathSciNet review: 3120584