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EMPIRICAL VERIFICATION OF THE EVEN
GOLDBACH CONJECTURE AND COMPUTATION
OF PRIME GAPS UP TO 4-10'8

TOMAS OLIVEIRA e SILVA, SIEGFRIED HERZOG, AND SILVIO PARDI

ABSTRACT. This paper describes how the even Goldbach conjecture was con-
firmed to be true for all even numbers not larger than 4 - 1018, Using a result
of Ramaré and Saouter, it follows that the odd Goldbach conjecture is true
up to 8.37 - 1026, The empirical data collected during this extensive verifica-
tion effort, namely, counts and first occurrences of so-called minimal Goldbach
partitions with a given smallest prime and of gaps between consecutive primes
with a given even gap, are used to test several conjectured formulas related
to prime numbers. In particular, the counts of minimal Goldbach partitions
and of prime gaps are in excellent accord with the predictions made using the
prime k-tuple conjecture of Hardy and Littlewood (with an error that appears
to be O(v/tloglogt), where t is the true value of the quantity being estimated).
Prime gap moments also show excellent agreement with a generalization of a
conjecture made in 1982 by Heath-Brown.

The Goldbach conjecture [13] is a famous mathematical problem whose proof, or
disproof, has so far resisted the passage of time [20, Problem C1]. (According to [I],
Waring and, possibly, Descartes also formulated similar conjectures.) It states, in
its modern even form, that every even number larger than four is the sum of two
odd prime numbers, i.e., that n = p 4+ ¢. Here, and in what follows, n will always
be an even integer larger than four, and p and ¢ will always be odd prime numbers.
The additive decomposition n = p 4 ¢ is called a Goldbach partition of n. The
one with the smallest p will be called the minimal Goldbach partition of n; the
corresponding p will be denoted by p(n) and the corresponding ¢ by ¢(n).

It is known that up to a given number z at most O(x°8™) even integers do
not have a Goldbach partition [30], and that every large enough even number is
the sum of a prime and the product of at most two primes [24]. Furthermore,
according to [48], every odd number greater that one is the sum of at most five
primes. As described in Table [Il over a time span of more than a century the
even Goldbach conjecture was confirmed to be true up to ever-increasing upper
limits. Section [ describes the methods that were used by the first author, with
computational help from the second and third authors, and others, to set the limit
of verification of the Goldbach conjecture at 4 - 10'8. Section B presents a small
subset of the empirical data that was gathered during the verification, namely,
counts and first occurrences of primes in minimal Goldbach partitions, and counts
and first occurrences of prime gaps, and compares it with the predictions made by
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TABLE 1. Some records of verification of the even Goldbach conjecture.

limit year who
unknown 1742 Goldbach [13]
10* 1855 Desboves [13]
(confirmed by Haussner in 1896 [13])
10° 1940 Pipping [44]
3.3-107 1964 Shen [44]
10® 1965 Stein and Stein [47]
(confirmed by Light et al. in 1980 [28])
2.10'° 1989 Granville, Van de Lune, and te Riele [19]
4-10" 1993  Sinisalo [46]
10 1998 Deshouillers, te Riele, and Saouter [11]
4-10" 2001 Richstein [40)
3-10'" (double checked) 2012 Oliveira e Silva, Herzog, and Pardi (this paper)
4.10'8 2012 Oliveira e Silva, Herzog, and Pardi (this paper)

conjectured asymptotic formulas. It is also established there that the odd Goldbach
conjecture, which states that every odd number larger than 5 is the sum of three
primes, is true up to 8.37 - 1026, Section 24 acknowledges those that contributed
computational resources to this extensive verification effort.

1. METHODS

To verify the even Goldbach conjecture for a given n two primes p and ¢ must
be found, possibly with ¢ equal to p, such that n = p+q. Although any p for which
n — p is prime will do [11L[12,[44], we opted to compute for each n the minimal
Goldbach partition p(n)+¢(n). The main reason for this choice is that the number
of occurrences of a given smallest prime in a minimal Goldbach partition, as well
as the smallest n for which it occurs, has some theoretical interest [19].

In order to compute the minimal Goldbach partitions for all even numbers be-
longing to a given interval it is necessary to have a list of the primes belonging to a
possibly slightly larger interval; these primes will be the candidates for g(n). Sub-
section [[T] describes the modified segmented Eratosthenes sieve used to generate
these primes. This modification, devised in 2001 when the computations reported
in this paper were started, exhibits excellent data-cache behavior. Near 10'® our
production code takes an average of about 10 clock cycles to determine if an odd
number is prime or not.

Subsection T2 describes how the minimal Goldbach partition can be computed in
a very efficient way for each even number belonging to a given interval. Irrespective
of the order of magnitude of n, our production code takes an average of about 9 clock
cycles to compute and collect statistics about each minimal Goldbach partition.

Subsection [[.3] describes how the computations were distributed among many
computers. It also describes the measures that were taken in order to attempt
to ensure that the computations were performed correctly. They were essential
to locate occasional bad results due to random low probability hardware failures.
Although very rare, such hardware failures are almost unavoidable in a computa-
tion that used a mixture of reliable and unreliable (low-cost personal computers)
computing resources, and which took about 770 one-core CPU years to finish.
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1.1. Cache-efficient segmented Eratosthenes sieve. Although several algo-
rithms with better asymptotic computational complexity exist [2L14}[17], the seg-
mented Eratosthenes sieve [3|[Bl45] — with our own modifications — appears to be
the fastest way to generate all primes in a relatively large interval with an upper
limit near 10'®. This is so because the simplicity of the algorithm and its regular
data requirements can be used to reduce the frequency of branch mispredictions
and accesses to out-of-cache data, thus speeding up considerably the program on
contemporary state-of-the-art general purpose processors. This is apparently not
so easy to do with the other algorithms.

We begin with a description of the standard segmented Eratosthenes sieve and
with an explanation of its shortcomings; py is the k-th prime number, i.e., p; = 2,
p2 = 3, and so on, |x] is the largest integer not larger than z, x mod y =z —y L%J,
and 7(z) denotes the number of primes not larger than .

Algorithm 1.1 (Segmented Eratosthenes sieve [3]). To generate all odd primes in
the interval (A, B), with B > A > 0, with A even, with K and A integers, and with
B =A+2KA, do:

1. [Initialize.] Set a to A and b to A+ 2A. Set j to 2.

2. [New interval.] Set mg,m1,...,ma—_1 to 1. Set i to 2.

3. [New primes.] If pf > b then advance to step 5.

4. If p3 < a then set o; to (2p; — 1 — (a + p;) mod (2p;))/2; otherwise set o;
to (p? —a—1)/2. Add 1 to j and go back to step 3.

Comment: a + 20; + 1 is the smallest odd multiple of p; larger than a that
needs to be considered.

[Mark composites.] If i > j then advance to step 8.

If 0; > A then subtract A to o;, add 1 to i, and go back to step 5.

Set my, to 0. Add p; to o;. Go back to step 6.

[Next interval.] Add 2A to a and to b. If a < B then go back to step 2;
otherwise terminate.

®© oo

At the beginning of step 8, m; is equal to 1 if and only if a + 2i + 1 is prime.

This algorithm requires that a list of the odd primes up to VB, plus the first
prime larger than v/B, to be available. Such a list can be computed easily with
a simple modification of the same algorithm. It is possible to avoid storing the
o0; variables; they can be recomputed every time a new (a,b) interval is being
dealt with. Doing so, however, slows down the algorithm because divisions on
contemporary processors are slow.

Under normal conditions only the inner (steps 6 and 7) and middle loops (steps 5
to 7) of Algorithm [[T] are significant parts of the computation [3]. The number of
times the middle loop is performed is

Npiddle = i’fr(\/A + 2]€A) — K= K’JT(\/E)

k=1

(the approximation is valid when A is much larger that B— A, as is usually the case
in practice). The number of times the inner loop is performed is, approximately

K

A B-A

Ninner ~ Z Z ; ~ T (log IOgB — 093165)
k=1 2<p<va+2kA
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FIGURE 1. Time needed to generate all primes in an interval of
230 integers centered at z using a simple implementation of Algo-
rithm [[T][34], second program version], for two processors (only one
core used on the Intel processor). The older single-core Athlon64
processor has a much smaller L2 cache, and slower main memory,
which for large x makes the algorithm rather slow. For both pro-
cessors, when x increases the optimal value of A also increases (not
shown). The initialization time of the algorithm (steps 3 and 4 for
the first interval), about a minute for the largest x on the slower
processor, was not taken into consideration.

(the last approximation is a simple application of Mertens’ second theorem [22]).
The execution time of Algorithm [[.T] can then be reasonably well approximated by
Qmiddle Nmiddle + Qinner NVinner, where amiddle and qinner are constants that depend on
the actual implementation of the algorithm and, of course, on the processor where
it is run. The second term corresponds to the useful work made by the algorithm.
The first corresponds to overheads and so should be made as small as possible. In
the standard segmented Eratosthenes sieve this is achieved by making K small or,
what is the same, by making A large [3]. Doing this, however, increases the amount
of memory accessed in an essentially random way in the inner loop. If this amount
of memory exceeds the amount that can be stored in the processor’s data caches
Qinner Will be large and so the algorithm will be slow.

A small value of A, on the other hand, gives rise to a large value of K. In this
case the algorithm spends a larger fraction of its time just updating the o; variables.
This is so because the middle loop is run more times and because the fraction of
primes that have an odd multiple in the interval (a,b) decreases as b increases.
For example, for B = 10'® and A = 2%, only 0.553% (281049 in 508 47533) of
the odd primes used to mark composites have an odd multiple belonging to the
interval (B — 2A, B). The best value for A will then be a trade-off between the
need to make A small (to keep all frequently used variables in the data cache),
and the need to make it large (to reduce the computational overheads). The end
result is a program which slows down considerably when b increases beyond an
implementation dependent limit, as illustrated in Figure [I1

There is a simple way to eliminate this problem. The main idea is to leave to
later intervals all primes that do not have an odd multiple in the current interval.
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In order to do this efliciently it is necessary to split the primes p; in two classes:
those that are smaller than A (the “small” primes), and those that are not (the
“large” primes). The former are guaranteed to have at least one odd multiple in an
interval of 2A consecutive integers, and can be dealt with as in Algorithm [[L.T} The
latter are guaranteed to have at most one odd multiple in such an interval (this
observation was used in [3] to speedup the inner loop of Algorithm [[T]). To deal
with them efficiently, the tuples (p;,0;) are placed in lists, one list per interval of
the form (A+ kA, A+ (k4 1)A), in such a way that at the beginning of the middle
loop of the algorithm the list associated with the current interval contains only the
“large” primes which have an odd multiple in that interval. This idea gives rise to
the following algorithm.

Algorithm 1.2 (Cache-efficient segmented Eratosthenes sieve). To generate all
odd primes in the interval (A, B), with B > A > 0, with A even, with K and A
integers, and with B = A+ 2KA, do:

1. [Initialize.] Set a to A and b to A+2A. Set k to 0, j to 2, and p to 3. Set

the lists Lo, Ly, . .., to the empty list.

2. [New interval.] Set mg,m1,...,ma—_1 to 1. Set i to 2.

3. [New “small” primes.] If p > A or if p> > b then advance to step 5.

4. Setpj top. If p? < a then set o; to (Zp— 1—(a+p) mod (2p))/2; otherwise
set oj to (p> —a —1)/2. Add 1 to j and replace p by the smallest prime
larger than p. Go back to step 3.

5. [Mark composites.] If i > j then advance to step 8.

6. If o, > A then subtract A to o;, add 1 to i, and go back to step 5.

7. Set my, to 0. Add p; to o;,. Go back to step 6.

8. [New “large” primes.] If p*> > b then advance to step 10.

9. If p*> < a then set o to (2p —1— (a+ p) mod (2p))/2; otherwise set o to

(p* —a —1)/2. Insert the tuple (p,o mod A) in the list Lit|o/a)- Replace
p by the smallest prime larger than p and go back to step 8.

10. [Mark composites.] For each tuple (p,o0) of the list Ly, set m, to 0 and
insert the tuple (p, (0 + p) mod A) in the list Lyt | (o4p)/A)-

11. [New interval.] Set k to k+ 1 and add 2A to a and to b. If a < B then go
back to step 2; otherwise terminate.

At the beginning of step 11, m; is equal to 1 if and only if a + 2i + 1 is prime.

On contemporary processors, the test at the beginning of step 6 generates many
time-consuming branch mispredictions when p; approaches A; in a practical im-
plementation this can be ameliorated by dealing with the primes between, say,
A/8 and A (the “middle primes”) in a way similar to how the “large” primes are
handled. There is no such problem in step 10.

If there is enough space in the data caches to hold the m; variables, the informa-
tion where each list insertion point resides in memory, and one cache line for each
active list, then the speed of the algorithm does not change much as b is increased,
as illustrated in Figure

An auxiliary sieve, updated using, for example, Algorithm [Tl can be used to
compute in an efficient way the sequence of the primes p used by Algorithm
The speed of both algorithms can be slightly improved by changing the way the
variables m; are initialized. For example, it is possible to set ¢ to 7 in step 2
of both algorithms if the m; variables are initialized with a precomputed pattern
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FIGURE 2. Time needed to generate all primes in an interval of
230 integers centered at z using a simple implementation of Algo-
rithm [34, second program version| (see also [25]), for the two
processors described in Figure [1 (only one core used on the Intel
processor). The initialization time, about half a minute for the
largest x on the slower processor, was not taken into considera-
tion. For z = 10'” this algorithm is about 8.4 times faster than
Algorithm [Tl on the Athlon64 and about 4.4 times faster on the
Core2 Quad. Note that the improvement is larger on the processor
with the smaller L2 cache.

determined by the first 5 odd primes (this pattern has a period of 3x5x7x11x13).
Of course, each m; variable should be associated with a single memory bit.

In a practical implementation of Algorithm the memory used by each list
should grow as the need for it arises, i.e., it should be a linked list. Furthermore, at

most 2 + L%J linked lists can be non-empty at any given time. A circular buffer
with a suitable size (a power of two is particularly useful) should then be used to
store pointers to the insertion points of the linked lists. In order to use the data
caches in an efficient way and to take advantage of the automatic memory prefetch
mechanism of contemporary processors each linked list should be subdivided in
relatively large chunks (each with, say, 4096 bytes of memory). The starting address
of each chunk should be a multiple of the processor’s data cache line size. Due to
the large chunk size of each linked list component, the memory overhead needed to
manage the linked lists is very small. Hence, the memory used by Algorithm is
only slightly larger than that used by Algorithm [IT1

The single-threaded 32-bit prime generation code used in our empirical verifica-
tion of the Goldbach conjecture is capable of generating primes up to (30 x 226)2 ~
4.05 - 10'8. Tt uses a modulo 30 wheel [37,138] variant of Algorithm [2 i.e., only
the numbers which are not multiples of 2, 3 and 5 are represented in the sieve.
This complicates the algorithm but makes it almost twice as fast; near 10'® the
average number of clock cycles required to determine if an odd integer is prime or
not dropped from 14.8 to 8.7, and from 22.1 to 10.5, respectively, for the Core2
Quad and for the Athlon64 processors described in Figure [l Assembly language
was also extensively used.
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TABLE 2. Empirical average value of ¢ when Algorithm [[3] termi-
nates for intervals of the form (10'2k,10'%(k + 1)).

t-average
log(k+1/2)+121log 10

k i-average

1 15.58519 0.55589

10  16.67964 0.55631

100 17.93997 0.55643
1000  19.22367 0.55657
10000  20.51067 0.55673
100000  21.79939 0.55690
1000000  23.08907 0.55708

1.2. Computation of the minimal Goldbach partition of all even numbers
belonging to a given interval. We begin by presenting a simple algorithm,
capable of computing the minimal Goldbach partition of a single even number n.
It will be used by a more efficient algorithm, presented below, to deal with the
(rare) cases not dealt with by that algorithm.

Algorithm 1.3 (Computation of the minimal Goldbach partition of n). To com-
pute the minimal Goldbach partition n = p(n) + q(n), do:
1. [Initialize.] Seti to 2.
2. [Test.] If 2p; > n then terminate, stating that there is no Goldbach partition
of n.
3. If n— p; is prime, then set p(n) to p; and q(n) to n — p;, and terminate.
4. [Try next prime.] Increase i and go back to step 2.

It was found empirically that the average value of ¢ when this algorithm termi-
nates (successfully) is approximately 0.557 logn (cf. Table 2)). This, and the clock
cycles lost due to a branch misprediction that is usually present when the algorithm
terminates makes it too slow to be used in the computation of the minimal Gold-
bach partition of all even integers belonging to a large interval. That can be done
efficiently using a segmented version (not presented) of the following algorithm

Algorithm 1.4 (Computation of the minimal Goldbach partition of all even num-
bers belonging to an interval). To compute the minimal Goldbach partition for all
even numbers belonging to the interval (C, D), with C and D odd, do:

1. [Initialize.] Set I to a value that depends on D and on the processor model
(see below). Set J to (py+1)/2. Set L to (D — C)/2. Set ug, uq, ...,
Ur+Jj—1 to zero.

Comment: w; will contain information about the smallest prime in the min-
imal Goldbach partition of C + 1 + 2i.

2. [Mark.] For each prime q belonging to the interval (C' — 3, D — 3), ordered
in increasing order, do step 3 (a subroutine) with j set to (q— C)/2. After
all primes q have been dealt with, go to step 4.

3. Fori=2,3,...,1, setk to j+ (pi —1)/2 and then set uy, to i.

Comment: ug, may be updated latter with a smaller i value (larger q prime).

1'We rediscovered this way of speeding up Algorithm [[Z3] Haussner used a similar idea to speed
up the construction of Goldbach partition tables up to 10 [1]. The algorithms used in [19,40,46]
only compute the minimal Goldbach partition when p(n) is larger than an implementation-defined
limit; also, they loop on n and not on gq.
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TABLE 3. Best average number of clock cycles (Tavg) used by
Algorithm [l to compute p(n), and to collect statistical data,
for an even integer near x, and the corresponding best value of
the I parameter for two different processor models (cf. Figure [I);
for the Core2 Quad I =~ 2.50logxz — 13.7, and for the Athlon64
I ~283logx —12.4.

Core2 Quad Athlon64
x Tae I 12T Tae I 522

1012 9.837 56 2.523 8.234 66  2.837
10%3 9.788 61  2.496 8.238 72  2.820
1014 9.746 67 2.503 8212 79  2.835
10%° 9.714 72 2.481 8.195 85  2.820
10%6 9.707 78  2.489 8210 92  2.834
107 9.701 84  2.496 8.207 98  2.820
1018 9.707 90  2.502 8.226 105 2.833

4. [Finish.] Fori=0,1,...,L—1, setn to C+ 1+ 2i; if u; is not zero then
set p(n) to py,; otherwise compute p(n) using Algorithm [L3] (with i set to
I+ 1 in its first step). Set q(n) to n —p(n).

In other words, for each prime ¢ belonging to the interval (C' — 3, D — 3) one
updates the array u in the positions corresponding to the even integers 3+ ¢, 5+ ¢,
..., pr + q with the values 2, 3, ..., I. In the end, the number stored in each array
position will be either zero, if no Goldbach partition was generated for the even
number corresponding to that position, or the index of the smaller prime of the last
Goldbach partition that was generated for that even integer (it will be the minimal
Goldbach partition if the primes ¢ are processed in increasing order). In the former
case the minimal Goldbach partition has to be computed using Algorithm

It turns out that the choice I = |alog D + 3], with a and § parameters that
depend on the processor model, approximately minimizes the execution time of
the algorithm. This is illustrated in Table Bl which presents best I values and the
corresponding average number of clock cycles per even integer used by our most
efficient implementation (in assembly) of a segmented version of Algorithm [I4]
for the two processors described in Figure [[I Remarkably, the average number of
clock cycles remains practically constant. This is so because for the best I the
amount or work done in steps 2 and 3 of Algorithm [[.4] is approximately given by
(D — C)(a+ f/log D), i.e., it does not change much with D when D — C' is held
constant, and because for the best I the relative frequency that Algorithm [I3] is
invoked in step 4 of Algorithm [[.4]is approximately inversely proportional to log D.

In order to make Algorithm [[4] as fast as possible, the loop of step 3 should be
unrolled. In our final implementation when the computation starts, self-modifying
assembly code is used to trim this unrolled loop to the appropriate value of I. Fur-
thermore, each loop iteration is performed by a single move immediate instruction,
using the base register plus constant offset addressing mode (depending on the pro-
cessor, up to two such instructions can usually be executed in each clock cycle).
If I is large enough, then in step 4 u; will be non-zero with a relative frequency
close to one. The test “u; is not zero” will then not be mispredicted often by the
processor, and the slower Algorithm will be invoked rarely.
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1.3. Computational details and error detection and correction measures.
Our code was developed in 2001 for Intel/AMD (x86 instruction set) single-core
32-bit processors. Although later a 64-bit instruction set for AMD /Intel processors
appeared, given the initial large investment in both the optimization (assembly
language, software pipelining) and in the verification of the correctness of the code
(the output of each assembly language routine was compared to the output of a
slower C language routine that used a simpler fool-proof algorithm), it was deemed
prudent to not produce a 64-bit version of the code. Given the programming
techniques used, it was estimated that a 64-bit version would be a few percent
faster that a 32-bit version.

The entire computation was split into disjoint intervals of 10'? integers; the
k-th interval, 0 < k < 4 - 105, covers the even integers that satisfy the conditions
max(4,102k) < n < 10'2(k+1). Testing each interval required between eight hours
(in the year 2001) and about forty minutes (in the year 2012). Processors with more
than one core can test in parallel, with a very mild degradation in performance, a
number of intervals equal to the number of cores they have. On Intel processors
with hyper-threading capabilities, testing two intervals on the same processor core
takes between 50% (core i7) and 80% (core i3) more time than testing a single
interval on that core (a gain between 2/1.5 and 2/1.8).

A master-worker paradigm was used to automatically manage the computations:
a central master, used to distribute the intervals among a pool of workers and to
collect the data of processed intervals, and many workers that did the actual testing
work. Each worker had a unique ID and was capable of processing several intervals
without contacting the master. Intervals not processed within a prespecified time
limit were redistributed to other workers. Windows and GNU/Linux versions of
the worker code were produced (to ensure correctness, the low-level functions were
exactly the same in the two cases). A worker was also capable of working without
a master; that capability was used on high-performance computing environments.
In those cases, the distribution of the intervals and collection of results was done
using semi-automatic tools specially developed for that purpose.

The data computed and recorded for each interval of 10! integers includes:

e two worker IDs (intervals can be double checked by workers with different
IDs), and the respective number of seconds that were used to process them,

e counts of the number of primes in each of the 32 primitive residue classes
modulo 120,

e counts and the first occurrence of minimal Goldbach partitions with a given
smallest prime,

e counts and the first occurrence of gaps between prime numbers, and

e a 32-bit cyclic redundancy check sum.

(Due to an unfortunate oversight, a high-precision approximation to the sum of the
inverses of the twin primes was not collected.) The entire data was stored in 4000
files, each holding information about 1000 intervals, using a total of about 27GB of
storage space.

The processed data of an interval received from a worker was screened by the
master to detect obvious errors: the sum of the counts of minimal Goldbach par-
titions had to match the number of even numbers belonging to the interval, and
the sum of the counts of prime gaps had to match the sum of the primes in the
residue classes modulo 120. These two tests never failed. The following offline
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screening test was then performed for each interval of 102 integers: the computed
number of primes belonging to the interval was compared to an independent count
obtained using the first author’s implementation of a combinatorial method to com-
pute m(x) [827.B5] (this extra data was generated using about 20 one-core CPU
years). It turned out that this test was very good at detecting bad results. This
happened on a few occasions in the early stages of the computation (and very, very
rarely later on), when personal computers, in particular, their memory subsystems,
were less reliable than those that can be bought in 2012 (when the computations
reported in this paper were finished). Once a bad result was detected the entire
interval was recomputed, the computer that produced it was black-listed, and all in-
tervals previously processed by that computer were double-checked. This procedure
did not uncover more bad results.

Some time after the verification limit of 10'® was reached, the number of primes
in the residue classes modulo 4 reported in [9] was compared to those counted in
our verification efforts. To our dismay, a discrepancy of one was found in two of
the residue classes between 3 - 1017 and 4 - 10'7. Fortunately, Mark Deléglise’s
program was publicly available. Using it, a bisection strategy allowed us to locate
quickly the interval with the bad result. This was dealt with as described at the
end of the previous paragraph. To reduce considerably the probability of a (very
rare) error of this kind to remain undetected, a final screening test was performed,
this time for each interval of 10'® integers: the counts of the primes in the residue
classes modulo 120 were compared to the counts obtained using Deléglise’s program
(this extra data was generated using about 10 one-core CPU years). No further
discrepancies were detected.

As a final precaution, the entire interval up to 3 - 10'7 was double-checked, and
the intervals containing one of the first 100 occurrences of a smallest prime in a
minimal Goldbach partition or of a prime gap, as well as about 4% of the remaining
intervals were also double-checked. No further discrepancies were detected. As
expected, no errors were ever found on computations done on high-performance
computing environments (they account for about 25% of all our data). We are
therefore highly confident that all of our counts and first occurrences are correct.
We feel that further double-checks are best left for a future still larger verification
effort.

2. RESULTS

In this section we present some results extracted from the data collected by our
confirmation of the truth of the even Goldbach conjecture up to 4-10'®. In subsec-
tion [2.1] we present record values of first and late first occurrences of a prime in a
minimal Goldbach partition, test the conjecture [I9] that p(n) = O(log® nloglogn),
and compare the number of occurrences of a given prime in the minimal Gold-
bach partitions up to 4 - 10'® with predictions made using the inclusion-exclusion
principle applied to the prime k-tuples conjecture [2I]. In subsection we do
the same, but for prime gaps (testing this time the conjecture [7,[I8,[43] that
Dnal — Pn = O(log2 n)). In subsection 23] we compare prime gap moment data
with corresponding predictions made by a conjecture of Heath-Brown [23]. Finally,
in subsection 24 it is shown that our new verification limit of the even Goldbach
conjecture can be used to prove without extra computation that the odd Goldbach
conjecture is true up to 8.37 - 1026,
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TABLE 4. Record-breaking values of p(n) for n < 4-10!8.

n  p(n) n  p(n) n  p(n)

6 3 10759922 829 8342945544436 3917

12 5 24106882 929 1059 16059 00482 4003

30 7 27789878 997 1298 2270197518 4027

98 19 37998938 1039 151979009 94218 4057

220 23 60119912 1093 2899 80506 50046 4327
308 31 113632822 1163 4687 8442766282 4519
556 47 187852862 1321 7690 3574497118 4909
992 73 335070838 1427 18416 2477860248 5077
2642 103 419911924 1583 21736 1316706568 5209
5372 139 721013438 1789 38996 50268 19938 5569
7426 173 1847133842 1861 10476105758 36828 6469
43532 211 7473202036 1877 625326 23459 30828 6961
54244 233 11001080372 1879 249255560081 75266 7559
63274 293 12703943222 2029 31284177910528922 7753
113672 313 21248558888 2089 12100502 23040 07026 8443
128168 331 35884080836 2803 25532912 6688555994 8501
194428 359 105963812462 3061 258 54942 6916149682 8933
194470 383 244885595672 3163 55527435 15567 50822 8941
413572 389 599533546358 3457 8871238030778 37868 9161
503222 523 3132059294006 3463 906 03057 95622 79642 9341

1077422 601 3620821173302 3529 27959351165744 69638 9629
3526958 727 4438327672994 3613 3325581707333960528 9781
3807404 751 53205038 15888 3769

2.1. Minimal Goldbach partitions. As in [19], let S(p) be the smallest even
integer n for which p(n) = p and let L(p,x) be the number of even integers not
larger than x for which p(n) = p. Table @ presents the record-breaking values of
p(n), i.e., values of p(n) larger than those for all smaller values of n (sometimes
also called maximal values), that were found in this verification. It extends Table 3
of [], Table 3 of [19], Table 1 of [46], and Table 1 of [40]. Table [l presents the
record-breaking values of S(p) that were found. It extends Table 2 of [46].

2.1.1. Conjectures concerning p(n) bounds. In [19] it was conjectured that p(n) =
O(log® n loglogn). In an email exchange in April 2012, Andrew Granville, us-
ing probabilistic arguments, suggested to the first author two more precise (in-
compatible) conjectures, both of the form p(n) < (C + o(1)) log? nloglogn: one
with C = C5 !~ 1.51478 and another, using a more refined argument, with
C = 2e77C; " ~ 1.70098, where Cy = 0.66016 is the twin primes constant and
where v ~ 0.57722 is Euler’s constant. To test these conjectures, Figure [3] presents
a plot of the values of

_ p

log® S(p) loglog S(p)

that we were able to compute. For our data Q1(p) clearly stays below 1.7 and only
two points lie above 1.514: Q1(3) &~ 1.60231 and @)1 (6469) ~ 1.52627. As explained
in subsubsection 2T3] our empirical L(p, ) data suggests that the slowly increasing
trend that can be observed in Figure [3] will not persist for ever. Given that these
conjectures allow a finite number of solutions of Q1(p) > C + €, and taking into

Q1(p)
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TABLE 5. Record-breaking values of S(p) for S(p) < 4-108,

P S(p) P S(p) P S(p)

3 6 1049 379410652 4133 21528 58899 79816

5 12 1061 554463808 4241 28078 06211 53342

7 30 1091 678546502 4373 31924 55155 37554
11 124 1097 1168888534 4457 33263 84502 61204
17 418 1283 1673268292 4523 44568 54135 00946
37 1274 1301 1927528888 4621 55724 95547 49362
53 2512 1327 2331465314 4643 65020 45060 20934
59 3526 1429 2538833642 4679 66695 60251 01272
71 4618 1439 2816593312 4721 8144108625 37738
83 7432 1451 4407165118 4733 102520 38425 12482
89 12778 1493 5801828806 4817 124657 87228 03144
101 26098 1559 8946630856 4937 184205 42851 36636
131 34192 1571 21439965412 5051 230360 82907 75108
149 37768 1787 26070202114 5087 274844 32963 52086
167 59914 1811 30325742068 5227 377167 15201 32578
179 88786 1867 30834371756 5333 44630392199 37862
191 97768 1873 32652627542 5471 512249 86761 96358
197 112558 1889 44460316708 5483 6 19847 81686 28056
293 221942 1907 64243962808 5501 142117444030 75144
257 237544 1997 65334725368 5879 158123799596 45512

263 485326 2027 1138431 30358 5903 2001798 63813 70774
281 642358 2153 244808993116 5987 3182162 58292 50454
317 6 86638 2351 384619217512 6131 480337879780 24768
347 1042078 2441 74 3891046202 6263 5510400 89583 65746
379 1172918 2459 83 88139 74892 6491 1071572071018 94788
401 2041402 2663 1578084723724 6761  182745307201020658
419 2406448 2837 25412467 52056 6899 2370986161937 22886
463 42 88574 2963 3228317220754 7013 29654004 2727113116
487 49 38848 2969 604 65005 99278 7187 34420574 3816095468
509 9292156 3023 71195508 17194 7307 3705811067669 09188
521 14341888 3137 740 55675 22324 7489 4114116299917 22966
569 17726098 3203 107703538 52014 7577 55861954 7569907716
593 20757292 3323 174551588 97256 7649 7542762288329 57188
659 32507242 3449 1856 69525 90488 7691 8136956221921 68004
739 34362758 3557 363614483 59204 7703 1473611722331822212
743 37890844 3659  39028377647218 7853 159956602 59143 18344
761 49358128 3677 408546803 72224 7949 179316778 59048 03016
773 68788066 3701 447767061 82504 8039 204343718 0188810768
839 129796642 3761 541330158 34948 8087 27581634281002 38178
853 144516902 3863 609130487 45092 8243 324440008 45058 12356
911 150386932 3923 1032523255 78522 8273 351179756 73597 60604
941 2068 92484 4073 1299877000 25542 8369 371475979 38306 49402
977 247013164 4079 1435212522 89068 8387 387829701 74376 46306
1031 2994 34108 4127 1945391791 43308 8423 >4-10"

consideration the logarithmic scale associated to this problem, it seems likely that
much more data (up to 10'%° or even more) will be needed to empirically determine
C directly with some accuracy, and hence determine which of the two conjectures
is more plausible.
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FIGURE 3. Plot of Q;(p) for S(p) < 4-10'8. Disks (), circles (o),
and dots (-) correspond respectively to data obtained from Table []
from Table [ and to values of S(p) that did not make it to either
of the two tables.

2.1.2. Estimate of L(p,x) using the prime k-tuple conjecture. Let h = {hy, ..., hi}
be a set of k distinct integers, all of the same parity, and let 7(z; h) be the number
of k-tuples (m + hi,...,m + hg), with 1 <m < z, containing only primes. By the
inclusion-exclusion principle

(2.1) Lip.a) = = 3 (~1)ln(as ),

where the sum is over all subsets s of { —3,—5,—-7,—11,...,—p } which contain
—p, and where |s| denotes the cardinality of s. In [2I] Hardy and Littlewood
conjectured, with ¢ = 2, that

(2.2) (2 k) ~ G(h) / ’

where

(23) ot =2 I (1-"27) (1- %)k

and where v, (h) is the number of distinct residue classes modulo p occupied by the
elements of h. Using this so-called prime k-tuple conjecture to approximate m(z; s)

in (1) yields

. T dt
2.4 L(p,z) = —1)e / —
(2.4) (p, z) Z (-1) A

where Cp . = 32 5= G(s). The Cp ) constants can be computed using a simple
adaptation of the method used in [6] to compute other constants of the same kind.
The first author computed them all for p < 250 using about 16 one-core CPU
months. As an example of the general behavior of these constants, Table [f] presents
the non-zero values of Caq1 k.

It turns out that for relatively small values of x the lower limit of integration of 2
suggested by Hardy and Littlewood for (22)) is a very bad choice for (24]) when

dt
logk t
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TABLE 6. Non-zero values of Ca41 1 (only 21 significant digits shown).

k’ CZ41,Ie k 0241,k
1 1.00000 00000 00000 00000 23 3.70204 14661 49439 69979 - 10%*
2 1.1315866859 65499 59139 - 102 24 1.31461 87368 38578 84258 - 10%°
3 6.93019 94386 60869 24137 - 10° 25  4.22256 92828 55965 63028 - 10%°
4 3.00886 99646 95696 40719 - 10° 26 1.2248206601 5578390143 - 10%°
5 1.0164078939 1216269790 - 107 27 3.20204 6360901368 30154 - 10%°
6 2.79258 80742 8788131431 - 108 28  7.526604695507176 17022 - 10%°
7 6.4174199060 14428 77794 - 10° 29 1.58609 3049360132 31281 - 10%7
8 1.259137497252254 51935 - 10*? 30 2.98608 21872 4867588621 - 1027
9 2.1428809248 75761 71467 - 10*2 31 5.0014391728 42627 39468 - 10*7
10 3.20144 2807144559 73700 - 10*3 32 7.41494 33404 69631 24282 - 10%7
11  4.23668 72148 78062 42359 - 104 33 9.67103 7423726498 34947 - 10%7
12 4.99990 15938 6212223271 - 10'° 34 1.10137983328707945198 - 1028
13 5.28865 62801 63349 25545 - 10'° 35 1.08516 76207 67543 49852 - 10%8
14  5.03316 4384195479 05620 - 107 36 9.1447169789 56584 84128 - 1027
15 4.32228 77040 16020 86166 - 108 37 6.49627 26305 32786 34274 - 10*7
16  3.3567230146 8447712695 - 10*° 38 3.81830483732148247613 - 10%7
17 2.3612494061 35894 65715 - 10%° 39 1.81159 68041 8762269166 - 10%7
18 1.50615 10047 65390 73306 - 10%* 40 6.70676 4747080130 86245 - 10%°
19 8.71726 5691230150 63187 - 10%! 41  1.84470 5624509659 86010 - 1026
20 4.5792455341 30673 89384 - 10%2 42 3.49098 59394 3877729499 - 10%°
21 2.183114171001000 00195 - 10?3 43 3.96213089715631445799 - 10%4
22 9.4418769191 50547 38724 - 10?3 44 1.95366 73527 2236022383 - 1023

accurate estimates are desired. For example, using ¢ = 2 we get ﬁ(241, 10%) ~
—4-10%*, which is very far from its true value of zero, while using ¢ = 0 we get
ﬁ(241, 10%) ~ —1.23592, which is a much more reasonable estimate. Using ¢ = p we
get ﬁ(241, 10%) ~ 0.00084, which is again a very reasonable estimate[d The same
behavior was observed of all other values of p and of x that were tried. Therefore,
for simplicity of computation, in all of our comparisons between L(p, ) and ﬁ(p, x)
a lower limit of integration of ¢ = 0 was used. Furthermore, as illustrated in Table[7]
for z = 4-10'® and p = 241, most of the non-zero C), ; constants are important (for
x large enough all will be important).

Inspired by formula 5 of [7], which results from the application of the law of the
iterated logarithm [I5] to a random counting function that attempts to mimic the
large scale behavior of 7(x), it was decided to test the possibility that the large
deviation behavior of L(p,z) — L(p, z) follows a similar law. Considering that it is
reasonable to expect that prime number patterns follow, asymptotically, a Poisson
distribution [16,26], which implies that variances should be equal to means, one
may expect that ’ﬁ(p, x) — L(p, x)’ exceeds (1+¢€)/2L(p, z) loglog L(p, z) at most
a finite number of times. However, the law of the iterated logarithm assumes that

21t is necessary to avoid a lower limit of integration near 1, because [A/(p7 z) blows up in that
case (the principal values of the integrals present in ([Z4]) are used when ¢ < 1 and =z > 1). It is
remarkable that, for ¢ = 0, |f/(p, p)| < 6 for p < 250. (We have no explanation for this behavior;
it implies an almost perfect cancellation of the large terms in the finite alternating series (24)).)
Thus, both ¢ = 0 and ¢ = p are reasonable lower integration limits (¢ = 2 in not), at least for
p < 250. The partial sums of (2.4]) appear to converge faster when ¢ = 0 than when ¢ = p. The
choice ¢ = 0 has the added advantages of being more natural and being constant.



EMPIRICAL VERIFICATION OF THE EVEN GOLDBACH CONJECTURE 2047

TABLE 7. Approximation of L(p,z) by truncation of L(p,z) to K
terms, for ¢ = 0, p = 241, and = = 4 - 10'8.

K L(p, ) K L(p, =)

1 95 67626 09731 64698.5 10 6296686571023021.9
9 —16345040 70427 19193.7 15 83045015601 29840.7
3 2166355093958 03246.5 20 83030411009 71376.4
4 —178876967961198263.7 25 830304 11896 68030.5
5 14158277 1492486186.5 30 830304 11896 67526.0
6 —6977094 80643 09200.0 44 83030411896 67526.0

L(p,z) 8303041149824931
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FIGURE 4. Plot of Q2(p, x) for p < 250 and for some values of z.

the random variables are independent, which is not the case here, so the above
bound may not be correct. Nonetheless, one may hope that it captures the correct
order of magnitude of the error term. To test this, Figure d presents a plot of some
values of .
L(p, I) - L(p,I)

/2L (p,z)loglog L(p, x) ’

for p < 250 and for selected values of = between 10'° and 4-10'® (twenty per decade,
approximately equispaced on a logarithmic scale). From this figure it appears that
’QQ (p, :L‘)’ may indeed be bounded (if not its growth rate should be very, very small).
It also appears that the factor of two inside the square root may be slightly too
large. These empirical observations suggest that, asymptotically, one should have

. NI [z loglogx

(since Cp 1 = 1 one has L(p, z) ~ iog 7> and so one should also have L(p, z) ~

QZ(pa J)) =

lozz)'

2.1.3. Rate of decay of L(p,x). Tt appears that, on a logarithmic scale, L(p, z) does
not deviate much from () exp(—(m(p) — 2)/(0.755log z — 4.19)). This empirical
result was obtained by first using best least-squares fits to approximate log L(p, z)
by my(z)m(p) + b1 (z) for several values of z between 10'° and 4 - 10'® (discarding
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FIGURE 5. Plot of Q3(p) and of Q4(p)Qs(p), for 2 < w(p) < 1000,
ie, for 3 < p < 7919. On the plot of Q3(p) the points with
p mod 3 = 1 are represented by circles (o) and the rest by disks (e).

data points as soon as L(p, z) < 100), and then by using another best least-squares
fit to approximate 1/mq(z) by mqlogx + be (this last fit was extremely good). To
study the deviations of the decay of L(p,z) from a true exponential decay, the
upper part of Figure [ presents a plot of some values of

Q3(p) — 10—1760.035571'(]7)1'/(]3, 4 . 1018).

The factor ¢%-03%57(P) removes most of the exponential decay of L(p,4 - 10'8). The
scale factor 10717 ~ 1/7(4 - 10'®) places Q3(p) close to 1. Similar behavior was
observed for other values of x (with different exponents and scale factors). The ups
and downs of the p mod 3 = 1 points (o) and of the p mod 3 = 2 points (e) are
closely connected to what is happening to the difference A(p) = 7(p; 3,2)—n(p; 3, 1),
where 7(x;m, a) denotes the number of primes up to x congruent to a modulo m.
The extra factor

1—0.04A(p), if pmod3 =1,

Qulp) = {1 +0.04A(p), if pmod3 £ 1,

approximately removes most of the fluctuations of Q3(p), as can be observed in the
lower part of Figure [ (the constant 0.04 was found by trial and error). Section 5
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FIGURE 6. Plot of Qs(p) for S(p) < 4 - 10 and for p > 1000.
Disks (e), circles (o), and dots () correspond respectively to data
obtained from Table @] from Table [{, and to values of S(p) that
did not make it to either of the two tables.

of [19] provides an heuristic explanation for this last empirical observation. We
were unable to explain the residual pattern observed in the lower part of Figure [l

It is reasonable to expect that the first occurrence of a minimal Goldbach par-
tition with p(n) = p has an order of magnitude similar to that of the solution of
L(p,x) = 1 (this is indeed the case for p < 250). From our observed approximate
exponential decay of L(p,z) it then follows that it is likely that S(p) has an order

of magnitude similar to that of the solution of

m(p) — 2 _
(25) () exp <_0.755 log 7 — 4.19) =1

The left-hand side of this equation gives a rough estimate of the value of L(p,x),
obtained by ignoring the (relatively small) deviations of the decay of L(p,x) from
a true exponential decay. Disregarding the —2 in (2.3 and using the asymptotic
estimate 7(2) ~ o, @.3) becomes Qs(p) ~ 1, where

_ ™(p)
~0.7551og? S(p) — 0.755log S(p) loglog S(p) — 4.1910og S(p)

Qs(p)

Our empirical data (cf. Figure[d) supports the validity of this approximation. Note
that this figure does not exhibit the slightly increasing trend observed in Figure B3] (if
the term —4.191og S(p) is ignored then that trend becomes clearly visible). Using
the rough approximation py & klogk to solve Q5(p) ~ 1 in order to get p yields

p ~ 1.511og” S(p) loglog S(p).

Remarkably, this result is consistent with the Granville conjecture with C = Cy L
However, this may be what happens for a typical first occurrence. Extreme values
(the o points) may behave differently, perhaps in a way consistent with the Granville
conjecture with C' = 2e~7C5 ', As stated before, much more data is needed to settle
this issue by empirical means.
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TABLE 8. Record-breaking values of g for pr < 4-10'%.

Pk gk Pk gk Pk gk

2 1 122164747 222 13462943 10749 582

3 2 1896 95659 234 140 86954 93609 588

7 4 191912783 248 196 81885 56461 602

23 6 387096133 250 26149417 10599 652

89 8 436273009 282 7177162611713 674

113 14 1294268491 288 138290485 59701 716

523 18 1453168141 292 1958 1334192423 766

887 20 2300942549 320 4284 22839 25351 778
1129 22 38426 10773 336 908743294 11493 804
1327 34 4302407359 354 17123 13424 20521 806
9551 36 10726904659 382 2182094054 36543 906
15683 44 20678048297 384 11894599698 25483 916
19609 52 22367084959 394 16869949409 55803 924
31397 72 25056082087 456 1693182318746371 1132
155921 86 426526 18343 464 4384154 7845541059 1184
360653 96 1279763 34671 468 55350776431903243 1198
370261 112 1822268 96239 474 808736246272 34849 1220
492113 114 241160624143 486 203986478517455989 1224
1349533 118 297501075799 490 218034721194214273 1248
1357201 132 303371455241 500 30540582 6521087869 1272
2010733 148 304599508537 514 352521223451364323 1328
46 52353 154 4166086 95821 516 4014299259991 53707 1356
17051707 180 46 1690510011 532 41803264 59367 12127 1370
20831323 210 614487453523 534 804 21283 06866 77669 1442

47326693 220 738832927927 540 14251728244376 99411 1476

2.2. Prime gaps (and counts of twin primes). Let gx = pr+1 — pr be the gap
between the consecutive primes py and pi41, and, for g restricted to be either 1
or a positive even integer, let P(g) be the smallest prime py such that gp = g, if
one exists, of infinity otherwise. The Polignac conjecture [36] asserts that P(g)
is always finite. Also, let N(g,z) be the number of solutions, with px1; < x, of
the equation g, = g. (The choice of counting limit, either py < = or pr41 < x,
is a matter of implementation; we chose the latter because it does not require the
computation of the smallest prime larger than x.)

Table [ presents the record-breaking values of gy, i.e., values of g larger than
those for all smaller values of k (called maximal prime gaps), and Table [@ presents
the record-breaking values of P(g), that were found up to 4 - 10'®. To save some
space, we do not present other first occurrences of prime gaps. For p; < 5 - 1016,
the previous published record of computation of prime gaps, they can be found
in [31,832,[50], were references to even earlier computations can be found (the rest
can be found either on the first author’s web pages or on Thomas Nicely’s web
pages). The entries for g, = 1172, g5 = 1186, g5 = 1356 and gx = 1370 were first
discovered by Donald Knuth, and the entry for g, = 1048 was first discovered by
Bertil Nyman, in unrelated computations.
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TABLE 9. Record-breaking values of P(g) for P(g) <4 -10'8.

g P(g) g P(g) g P(g)
1 2 256 18728 51947 708 14367 94957 84681
2 3 264 23578 81993 722 21835 68728 45927
4 7 218 42609 28601 752 25529 45938 22687
6 23 204 56926 30189 764 32381 14816 25339
8 89 208 86505 24583 768 42368 30305 75549
10 139 314 89484 18749 774 46978 91428 49483
12 199 316 12109172293 780 47191 16993 84963
16 1831 328 13086861181 782 7265072235 59111
26 2477 334 308271 38509 796 12713098386 31957
28 2071 362 35877724601 812 17102709585 51941
30 4297 368 51430518413 848 253707 06528 96083
32 5591 370 599423 58571 866 275931 76844 46707
36 9551 388 1567987 92223 882 33710554523 81147
38 30593 422 2809748 65361 386 41270741657 53081
46 81463 436 36 74590 59871 898 419816 81494 92463
56 82073 442 41 74705 54687 922 42861292018 82221
64 80689 452 46 68551 87471 926 638194 41364 89827
66 162143 466 56 58556 95631 928 102443162284 69423
70 173359 470 681753256133 932 106764805159 67939
74 404597 472 86 52447 09607 968 191249902449 92669
80 542603 482 1051602787181 980 194036849017 55939
88 544279 488 1275363152099 986 348474741189 74633
92 927869 506 1339347750707 1006 373431922965 58573

94 1100977 508 18410864 84491 1018 3796724 08364 35909
102 1444309 510 2209016910131 1040 46 24684 83928 75127
108 2238823 518 22964970 58133 1048 880896723316 29091
116 5845193 520 2336167262449 1052 8921924 2873419107
124 6752623 536 5371284217763 1066 9843614 75403 71287
134 69 58667 568 601 03305 72331 1094 13903365 64467 25643
140 76 21259 576 8817792098461 1114 19888751 28069 88729
142 10343761 580 938 30813 40541 1124 2031534165230 88323
144 11981443 590  20761252261751 1144 2365529066620 07587
150 136 26257 608 2076 7330530329 1150 29346416 14651 35373
156 17983717 624 249230339 18059 1172 40024093 47413 22419
158 49269581 626 336054804 00197 1186 4044446923233 76357
166 83751121 628 341400476 13391 1192 7033907249524 90921
186 147684137 632 4567 86858 80759 1202 8196153449961 14321
194 166726367 646 510271604 68351 1208 133171124 79690 25019
200 378043979 654 5491 6086007427 1264 179855672 01943 08703
224 409866323 656 6586 2966031241 1290 298070756 30312 38363
226 519653371 676 786108331 15261 1306 327801806 91024 80227
228 895858039 680  82385435331119 1346 > 410"
254 1202442089 688 1105266702 35599
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FIGURE 7. Plot of Qg(g) for P(g) < 4-10' and for g > 4.
Disks (e), circles (o), and dots () correspond respectively to data
obtained from Table B from Table @] and to values of P(g) that
did not make it to either of the two tables.

2.2.1. Conjectures concerning prime gap upper bounds. Cramér [7] conjectured that
the equation g > clog? P(g) has only a finite number of solutions for ¢ > 1, and
an infinite number of solutions for ¢ < 1, i.e., he conjectured that the largest
gap between consecutive primes smaller than x should be approximately log2 x.
Granville [I8] conjectured that it should be 2¢~7 log? . Shanks, on the other hand,
conjectured in [43] that g ~ log® P(g) should hold for all first occurrences, and not
only for a subsequence of them. To test these conjectures, Figure [1 presents a plot
of almost all the values of
Qo(0) = 5

log” P(g)
that we were able to compute (the points corresponding to Qg(1) ~ 2.08137, to
Q6(2) = 1.65707 and to Q¢(4) =~ 1.05637 were omitted to reduce significantly the
vertical range of the plot). Figure [0 shows that Qg(g) stays below 1 for g > 4
and for P(g) < 4-10'® (thus, also below 2e~7 ~ 1.12292), and that Qg(g) is slowly
increasing. As explained later in subsubsection 2:2.3] the increase of Qg(g) will likely
not persist for ever. Given the absence of a clear limiting value (or accumulation
point) in Figure [l our direct evidence, based solely on the first occurrence of
prime gaps, is clearly insufficient to settle any of the three conjectures. As in
subsubsection 2. 1.I] much more data is needed before some tentative conclusions
can be drawn.

2.2.2. Estimate of N(g,x) using the prime k-tuple conjecture. From the inclusion-
exclusion principle it follows that (for g positive and even)

N(g,x) = Z(_1)|S|W(‘T; 3)7
S
where the sum is over all subsets s of { 0, —2,—4,..., —¢g } which contain 0 and —g.
Using the prime k-tuple conjecture to approximate 7(x; s) yields

1+g/2

(2.6) Ngo) = 3 (0 [

k )
Pt log™ ¢
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TABLE 10. Non-zero values of As1g 1 (only 21 significant digits shown).

k’ A210,k k A210,k
2 4.2250356214 19965 27314 24 1.30654 90389 76895 22546 - 1026
3 8.5527141397 8703274328 - 102 25  3.98015 77849 08386 50567 - 10%°
4 8.36792 6883333357 58482 - 10* 26 1.079412573942675 11873 - 10%7
5 5.2713932786 7759264771 - 10° 27  2.60080 3785440621 31982 - 10%7
6 2.40311097230257210228 - 108 28 5.5537235291 4782070330 - 10%7
7 8.44821970251745994316 - 10° 29 1.04795 3647429832 87798 - 1028
8 2.3832996966 57191 74741 - 10** 30 1.7414293763 3878742144 - 10%8
9 5.543373473869664 85470 - 1012 31 2.5386533161 0109225766 - 1078
10 1.08393953128489597964 - 1014 32 3.232758937330916 84257 - 1028
11 1.8079242248 15396 08373 - 10*° 33 3.5791390799 32642 56033 - 10%8
12 2.60095 2311019640 17470 - 106 34  3.4278340356 80761 84324 - 1078
13 3.25558 9222022344 78432 - 107 35 2.8244180085 26862 50480 - 1028
14 3.56978 17581 6363082201 - 108 36 1.99018 32570 50074 25081 - 10%8
15  3.44762 24282 49207 49866 - 10*° 37 1.1907012781 96056 59918 - 1078
16 2.94524 14940 75784 28189 - 10%° 38 5.9903261021 74504 60492 - 10*7
17  2.23304453355178041017 - 10%! 39  2.49657 02568 80552 25160 - 1027
18 1.50646 92038 79818 67663 - 10%2 40 8.4081941558' 7138232490 - 10%°
19 9.05996 67381 1866000136 - 1022 41 2.1945140146 49314 36474 - 10%°
20 4.86355 36308 62522 36983 - 1023 42 4.13354 37049 5621313673 - 10%°
21  2.3321901487 9283032932 - 10** 43 4.93576 1816053210 32685 - 10%*
22 9.9922309979 82591 31946 - 10%* 44 2.76114 18521 6106383771 - 1023
23 3.82427 45568 44084 48541 - 10%°

where Ag = 37,y G(s) and where G(s) is given by (2.3). The A, constants
can be computed using the method described in [6] (our A, ; constants are equal to
Brent’s (—1)¥A, ;1 constants, where g = 2r). The second author computed them
all for g < 212 using about 40 one-core CPU years (the first author double-checked
the results for g < 190). As an example of the general behavior of these constants,
Table [0 presents the non-zero values of As1g k-

Just like in subsubsection BZT.2] it turns out that the lower limit of integration
of 2 is also a very bad choice for ([Z0); both ¢ = 0 and ¢ = g give very good
approximations to N(g,z) (remarkably, |N(g,g)| < 6 for g < 212). In all of our

comparisons between N(g,z) and N(g,z) a lower limit of integration of ¢ = 0 was
used. Truncated versions of (2.6]) behaved just like the truncated versions of (2.4)
did: good approximations require all or, for small x, almost all terms.

As before, it seems reasonable to apply the law of the iterated logarithm to
attempt to bound |N(g,:c) — N(g,z)| by v/2N(g,z)loglog N(g,z). To test the
accuracy of this error bound estimate, Figure [§] plots some values of

N(g,.’[) _ N(gax)

Q7(gax) = \/2N(g,l“) 10glogN(g,l’).

Like Q2(p,x), it appears that ’Q7(g,x)| may indeed be bounded. In this case
the factor of two inside the square root appears to be about right. Given that
N(g,z) ~ Agvzlongw’ we should have N(g,z) = O(longx)7 and so our empirical
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FIGURE 8. Plot of Q7 (z) for 2 < g < 212 and for some values of z.

data suggests that, asymptotically, one should have

’N( ’ valoglogx

g’ - log T )

where now the constant implied by the O notation depends on g. It may very well
be that a similar result, with appropriate modifications, holds for the prime k-tuple
conjecture itself. Numerical experiments up to 10'7 appear to confirm that this is

SO.

2.2.3. Rate of decay of N(g,z). It appears that, on a logarithmic scale, N(g,x)
does not deviate much from Ay [ log - exp(—g/(0.960log z — 3.58)) (see, for ex-
ample, Figure 1 of [33] or Figure 2 of [49]). This empirical result was obtained using
a method similar to that used in subsubsection to quantify the decay rate of
L(p,z). According to [33,[49] the exponent should be, asymptotically, —g/log z,
which agrees reasonably well with our empirical results. The more prominent devi-
ations from a true exponential behavior are, in this case, due to the multiplicative
factors Ay = 2C2 [, b= L that are associated with the main term of N (g, ). To
study the residual deviation of the exponential decay of N(g,x), Figure [@ presents
a plot of some values of
Qs(g) = L. 10716£0-02669 (g 4. 10%8).
Ago

The factor 992669 removes most of the exponential decay of N(g,4 - 10'®). The
scale factor 5-10716 ~ log? 4-10'%/4-10'8 places Qs(p) close to 1. Similar behavior
was observed for other values of 2 (with different exponents and scale factors). We
were unable to explain the residual pattern observed in Figure

Just like what was done in subsubsection[2Z.I.3]to estimate the order of magnitude
of S(p), the order of magnitude of P(g) (or the order of magnitude of the largest g
for a given z) can be estimated by solving

2z < g >
—5—exp | — =1
log T 0.960 log xr — 3.58
The left-hand side of this equation gives a rough estimate of the value of N(g,z),
obtained by ignoring the (relatively small) deviations of the decay of N(g,z) from
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FIGURE 9. Plot of Qs(g), for 2 < g < 1000.
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FIGURE 10. Plot of Qg(g), for ¢ > 100 and P(g) < 4 - 10'8.
Disks (e), circles (o), and dots (-) correspond respectively to data
obtained from Table B from Table [@ and to values of P(g) that
did not make it to either of the two tables.

a true exponential decay and by replacing A4 o by its average value of 2. We get
Qo(g) ~ 1, where

g
(0.9601log P(g) — 3.58)(log P(g) — 2loglog P(g) + log2)"

Qo(g) =

Our empirical data (cf. Figure [[0) supports the validity of this approximation.
The absence of the term —3.58log P(g) in the denominator of Qs(g) appears to
be responsible for most of the increasing trend observed in Figure [l Remarkably,
Qo(g) ~ 1 gives g ~ 0.961og? P(g), which is close to Shanks’ conjecture. It may be
that typical first occurrences behave as Shanks’ conjecture predicts, and that max-
imal prime gap occurrences (the e points of Figures [ and [[0)) behave as Granville
predicts. As in subsubsection .1.3] much more data is needed to settle this issue
(by empirical means).
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TABLE 11. Number of twin-primes.

w2 (10%) w2(2 - 10%) w2 (4 - 10%)

18705 85220 35527 70943 67568 32076

158346 64872 301988 62775 57657248284
135780321665 2598584 00254 49 77948 45572

117 72092 42304 22597583 03674 43414016 30211

16 103041956 97298 198318470 25792 3819 68438 33352
17 9094 8839353159 17544 8328823978 33867 25524 19828

18 80867 58885 77436

TABLE 12. Normalized prime gap moments, and corresponding

best least-squares fit data.

15632034990 75902 302346 31232 35320

. Da (=) Dy (=) Da(x)
2z log = 6x log2 « 24z log3 x
1010 0.8464098596 0.6974579430 0.56752 97645
101 0.8585304971  0.7195994626  0.59635 95130
1012 0.8687826270 0.7385895560 0.62149 28727
1013 0.8775846594 0.7550798973  0.64360 59388
104 0.8852189506 0.7695103964 0.66316 24243
10% 0.8919091355 0.7822550563  0.68059 59792
1016 0.8978213100 0.7935938057 0.69623 28171
10'7 0.9030862730  0.8037506718  0.71033 90224
108 0.9078065824 0.8129043169 0.72313 23343
best fit data k=2 k=3 k=14
dro 0.99260 0.98357 0.97109
i1 ~3.7012 —7.6839 ~11.515
iz 7.7338 25.268 51.238
[De@@)=Dy(@)| 39 1095 6.5-1077 1.6-107%

ma?,X k!'zlogh—1x

2.2.4. Counts of twin-primes. As usual, let mo(z) be the number of twin-primes
up to z, i.e., let it be the number of solutions, with py < z, of g = 2. When zx
is an even integer, mo(z) differs from N(2,x) only when z lies in the middle of a
twin-prime pair. Contrary to what happens to the 7(z) function, the only known
way to compute 72 () is to enumerate all twin-primes up to . Table [[T] presents a
small subset of the values of m3(z) collected during our verification of the Goldbach
conjecture. As expected, m2(1016) agrees with the value found by Pascal Sebah and
Xavier Gourdon in their computation of an estimate of Brun’s constant [42].

2.3. Prime gap moments. Let

Dk(il,') =

Z (Pit1— Pi)k

Pi+1<T

be the k-order prime gap moment. In 1982 Heath-Brown [23] conjectured that
Dy(z) ~ 2xlogx. As suggested by the first author (based solely on empirical
evidence), and corroborated by Heath-Brown in an email exchange in April 2011,
the following more general conjecture is plausible:

Dy(z) ~ Kl zlog" 'z, kE>1
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(the generalization to non-integral k is obvious). The upper part of Table
presents some empirical data supporting this conjecture. As suggested by Heath-
Brown, it turns out that our empirical data is very well approximated by

N
Dy (z) = k' zlog" 1z Z
n=0

dkn
log" z’

where N is the order of the approximation. The lower part of Table presents
the dj,, coefficients, to five significant figures, obtained by performing second order
(N = 2) best least-squares fits to the normalized data. Twenty approximately
equispaced (on a logarithmic scale) data points per decade, for 1019 < x < 4-10'®,
were used to perform these fits. The last row presents the normalized worst observed
absolute error for all of these data points, obtained using full-precision coefficients.
Using a higher-order approximation, or using data starting at a higher value of z,
produced even better fits, with dyo coefficients even closer to one (it appears that
we do not have enough data to estimate reliably the remaining coefficients).

2.4. Verification limit of the odd Goldbach conjecture. The odd Goldbach
conjecture states that every odd number larger than 5 is the sum of three prime
numbers. It is known to be true for all odd numbers larger than €31°° [29], and
for all odd numbers larger than 5 and smaller than 1.13256 - 10?2 [39]. It is also
known to be true if the truth of the Riemann hypothesis is assumed [10]. Without
further computational effort, this last limit can be extended to 8.37-102%% using our
new verification limit of the even Goldbach conjecture and the prime gaps bounds
of [39], as stated in the following theorem.

Theorem 2.1. FEach odd number larger than 5 and smaller than
209267308 x 4 - 10'® = 8.37069232 - 10°°
is the sum of three prime numbers.

Proof. Let Ny = 4 -10'® and let A = 209267308. From our prime gaps results
up to Ny (cf. subsection 222)) and, in succession, from Theorems 3 and 2 of [39], it
can be inferred that, up to NyoA, the gap between consecutive primes cannot be
larger than Ny. The theorem follows by observing that using the odd primes up
to NoA to extend the minimal Goldbach partitions of 4, 6, ..., Ny, and also of
No+2 =211+ (Nog—209) and Ny +4 = 313+ (Ng — 309), will necessarily create at
least one way of expressing each odd number larger than 5 and smaller than NoA
as a sum of three primes (actually, any sufficiently dense subsequence starting with
the prime 3 will do [41]). O
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