## Divergence-conforming HDG methods for Stokes flows

HTML articles powered by AMS MathViewer

- by Bernardo Cockburn and Francisco-Javier Sayas PDF
- Math. Comp.
**83**(2014), 1571-1598 Request permission

## Abstract:

In this paper, we show that by sending the normal stabilization function to infinity in the hybridizable discontinuous Galerkin methods previously proposed in [Comput. Methods Appl. Mech. Engrg. 199 (2010), 582–597], for Stokes flows, a new class of divergence-conforming methods is obtained which maintains the convergence properties of the original methods. Thus, all the components of the approximate solution, which use polynomial spaces of degree $k$, converge with the optimal order of $k+1$ in $L^2$ for any $k \ge 0$. Moreover, the postprocessed velocity approximation is also divergence-conforming, exactly divergence-free and converges with order $k+2$ for $k\ge 1$ and with order $1$ for $k=0$. The novelty of the analysis is that it proceeds by taking the limit when the normal stabilization goes to infinity in the error estimates recently obtained in [Math. Comp., 80 (2011) 723–760].## References

- Garth A. Baker, Wadi N. Jureidini, and Ohannes A. Karakashian,
*Piecewise solenoidal vector fields and the Stokes problem*, SIAM J. Numer. Anal.**27**(1990), no. 6, 1466–1485. MR**1080332**, DOI 10.1137/0727085 - Jesús Carrero, Bernardo Cockburn, and Dominik Schötzau,
*Hybridized globally divergence-free LDG methods. I. The Stokes problem*, Math. Comp.**75**(2006), no. 254, 533–563. MR**2196980**, DOI 10.1090/S0025-5718-05-01804-1 - B. Cockburn,
*Two new techniques for generating exactly incompressible approximate velocities*, Computational Fluid Dynamics 2006. Proceedings of the Fourth International Conference in Fluid Dynamics, ICCDF4, Ghent, Belgium, 10-14 July 2006 (H. Deconinck and E. Dick, eds.), Springer-Verlag, 2009, pp. 1–11. - Bernardo Cockburn, Bo Dong, and Johnny Guzmán,
*A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems*, Math. Comp.**77**(2008), no. 264, 1887–1916. MR**2429868**, DOI 10.1090/S0025-5718-08-02123-6 - Bernardo Cockburn and Jayadeep Gopalakrishnan,
*Incompressible finite elements via hybridization. I. The Stokes system in two space dimensions*, SIAM J. Numer. Anal.**43**(2005), no. 4, 1627–1650. MR**2182142**, DOI 10.1137/04061060X - Bernardo Cockburn and Jayadeep Gopalakrishnan,
*Incompressible finite elements via hybridization. II. The Stokes system in three space dimensions*, SIAM J. Numer. Anal.**43**(2005), no. 4, 1651–1672. MR**2182143**, DOI 10.1137/040610659 - Bernardo Cockburn and Jayadeep Gopalakrishnan,
*The derivation of hybridizable discontinuous Galerkin methods for Stokes flow*, SIAM J. Numer. Anal.**47**(2009), no. 2, 1092–1125. MR**2485446**, DOI 10.1137/080726653 - Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov,
*Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems*, SIAM J. Numer. Anal.**47**(2009), no. 2, 1319–1365. MR**2485455**, DOI 10.1137/070706616 - Bernardo Cockburn, Jayadeep Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, and Francisco-Javier Sayas,
*Analysis of HDG methods for Stokes flow*, Math. Comp.**80**(2011), no. 274, 723–760. MR**2772094**, DOI 10.1090/S0025-5718-2010-02410-X - Bernardo Cockburn, Jayadeep Gopalakrishnan, and Francisco-Javier Sayas,
*A projection-based error analysis of HDG methods*, Math. Comp.**79**(2010), no. 271, 1351–1367. MR**2629996**, DOI 10.1090/S0025-5718-10-02334-3 - Bernardo Cockburn, Johnny Guzmán, and Haiying Wang,
*Superconvergent discontinuous Galerkin methods for second-order elliptic problems*, Math. Comp.**78**(2009), no. 265, 1–24. MR**2448694**, DOI 10.1090/S0025-5718-08-02146-7 - Bernardo Cockburn, Guido Kanschat, and Dominik Schotzau,
*A locally conservative LDG method for the incompressible Navier-Stokes equations*, Math. Comp.**74**(2005), no. 251, 1067–1095. MR**2136994**, DOI 10.1090/S0025-5718-04-01718-1 - Bernardo Cockburn, Guido Kanschat, and Dominik Schötzau,
*A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations*, J. Sci. Comput.**31**(2007), no. 1-2, 61–73. MR**2304270**, DOI 10.1007/s10915-006-9107-7 - Bernardo Cockburn, Guido Kanschat, and Dominik Schötzau,
*An equal-order DG method for the incompressible Navier-Stokes equations*, J. Sci. Comput.**40**(2009), no. 1-3, 188–210. MR**2511732**, DOI 10.1007/s10915-008-9261-1 - M. Farhloul and M. Fortin,
*A new mixed finite element for the Stokes and elasticity problems*, SIAM J. Numer. Anal.**30**(1993), no. 4, 971–990. MR**1231323**, DOI 10.1137/0730051 - Vivette Girault and Pierre-Arnaud Raviart,
*Finite element methods for Navier-Stokes equations*, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR**851383**, DOI 10.1007/978-3-642-61623-5 - M. D. Gunzburger,
*The inf-sup condition in mixed finite element methods with application to the Stokes system*, Collected lectures on the preservation of stability under discretization (Fort Collins, CO, 2001) SIAM, Philadelphia, PA, 2002, pp. 93–121. MR**2026665** - Peter Hansbo and Mats G. Larson,
*Piecewise divergence-free discontinuous Galerkin methods for Stokes flow*, Comm. Numer. Methods Engrg.**24**(2008), no. 5, 355–366. MR**2412047**, DOI 10.1002/cnm.975 - B. Cockburn, N. C. Nguyen, and J. Peraire,
*A comparison of HDG methods for Stokes flow*, J. Sci. Comput.**45**(2010), no. 1-3, 215–237. MR**2679797**, DOI 10.1007/s10915-010-9359-0 - N. C. Nguyen, J. Peraire, and B. Cockburn,
*A hybridizable discontinuous Galerkin method for Stokes flow*, Comput. Methods Appl. Mech. Engrg.**199**(2010), no. 9-12, 582–597. MR**2796169**, DOI 10.1016/j.cma.2009.10.007 - N. C. Nguyen, J. Peraire, and B. Cockburn,
*An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations*, J. Comput. Phys.**230**(2011), no. 4, 1147–1170. MR**2753354**, DOI 10.1016/j.jcp.2010.10.032 - L. R. Scott and M. Vogelius,
*Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials*, RAIRO Modél. Math. Anal. Numér.**19**(1985), no. 1, 111–143 (English, with French summary). MR**813691**, DOI 10.1051/m2an/1985190101111 - Junping Wang and Xiu Ye,
*New finite element methods in computational fluid dynamics by $H(\rm div)$ elements*, SIAM J. Numer. Anal.**45**(2007), no. 3, 1269–1286. MR**2318812**, DOI 10.1137/060649227

## Additional Information

**Bernardo Cockburn**- Affiliation: School of Mathematics, University of Minnesota, 206 Church Street S.E., Minneapolis, Minnesota 55455
- Email: cockburn@math.umn.edu
**Francisco-Javier Sayas**- Affiliation: Department of Mathematical Sciences, University of Delaware, Ewing Hall, Newark, Delaware 19711
- MR Author ID: 621885
- Email: fjsayas@udel.edu
- Received by editor(s): July 25, 2011
- Received by editor(s) in revised form: December 31, 2012
- Published electronically: March 19, 2014
- Additional Notes: The first author was partially supported by the National Science Foundation (Grant DMS-0712955) and by the Minnesota Supercomputing Institute.

The second author was a Visiting Professor of the School of Mathematics, University of Minnesota, during the development of this work, and was partially supported by the National Science Foundation (Grant DMS 1216356). - © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**83**(2014), 1571-1598 - MSC (2010): Primary 65M60, 65N30, 35L65
- DOI: https://doi.org/10.1090/S0025-5718-2014-02802-0
- MathSciNet review: 3194122