ON THE NUMBER OF PRIME FACTORS OF AN ODD PERFECT NUMBER

PASCAL OCHEM AND MICHAËL RAO

Abstract. Let $\Omega(n)$ and $\omega(n)$ denote, respectively, the total number of prime factors and the number of distinct prime factors of the integer n. Euler proved that an odd perfect number N is of the form $N = p^e m^2$ where $p \equiv e \equiv 1 \pmod{4}$, p is prime, and $p \nmid m$. This implies that $\Omega(N) \geq 2\omega(N) - 1$. We prove that $\Omega(N) \geq (18\omega(N) - 31)/7$ and $\Omega(N) \geq 2\omega(N) + 51$.

1. Introduction

A natural number N is said to be perfect if it is equal to the sum of its positive divisors (excluding N). It is well known that an even natural number N is perfect if and only if $N = 2^k - 1(2^k - 1)$ for an integer k such that $2^k - 1$ is a Mersenne prime. On the other hand, it is a long-standing open question whether an odd perfect number exists.

In order to investigate this question, several authors gave necessary conditions for the existence of an odd perfect number N. Let $\Omega(n)$ and $\omega(n)$ denote, respectively, the total number of prime factors and the number of distinct prime factors of the integer n. Euler proved that $N = p^e m^2$ for a prime p, with $p \equiv e \equiv 1 \pmod{4}$, p is prime, and $p \nmid m$. Moreover, recent results showed that $N > 10^{1500}$ [4], $\omega(N) \geq 9$ [3], and $\Omega(N) \geq 101$ [4].

In this paper, we study the relationship between $\Omega(N)$ and $\omega(N)$. By Euler’s result, we have $\Omega(N) \geq 2\omega(N) - 1$. Steuerwald [6] proved that m is not square-free, that is, the exponents of the non-special primes cannot be all equal to 2. This implies that $\Omega(N) \geq 2\omega(N) + 1$. We improve this inequality in two ways:

Theorem 1. If N is an odd perfect number, then $\Omega(N) \geq (18\omega(N) - 31)/7$.

Theorem 2. If N is an odd perfect number, then $\Omega(N) \geq 2\omega(N) + 51$.

We prove Theorem 1 in Section 3 using standard arguments. We prove Theorem 2 in Section 4 via computations using the general method in [4].

To summarize the known results for $\Omega(N)$, we have

$$\Omega(N) \geq \max \{101, 2\omega(N) + 51, (18\omega(N) - 31)/7\}.$$

2. Preliminaries

Let n be a natural number. Let $\sigma(n)$ denote the sum of the positive divisors of n, and let $\sigma_{-1}(n) = \frac{\sigma(n)}{n}$ be the abundancy of n. Clearly, n is perfect if and only if $\sigma_{-1}(n) = 2$. We first recall some easy results on the functions σ and σ_{-1}. If p is
prime, $\sigma(p^q) = \frac{p^{q+1} - 1}{p-1}$, and $\sigma_1(p^\infty) = \lim_{q \rightarrow +\infty} \sigma_1(p^q) = \frac{p}{p-1}$. If $\gcd(a, b) = 1$, then $\sigma(ab) = \sigma(a)\sigma(b)$ and $\sigma_1(ab) = \sigma_1(a)\sigma_1(b)$.

Euler proved that if an odd perfect number N exists, then it is of the form $N = p^e m^2$ where $p \equiv e \equiv 1 \pmod{4}$, p is prime, and $p \nmid m$. The prime p is said to be the special prime.

3. Proof of $\Omega(N) \geq \frac{(18\omega(N) - 31)}{7}$

We want to obtain a result of the form $\Omega(N) \geq a\omega(N) - c$ for some $a > 2$ using the following idea. If a is close to 2, then N has a large number of prime factors p such that both $p^2 \parallel N$ and $p \parallel \sigma(q^2)$ where $q^2 \parallel N$. It is well known (see [5]) that for primes t, r, and s such that $t \mid \sigma(p^{s-1})$, either $t = s$ or $t \equiv 1 \pmod{s}$. In particular, this gives $p \equiv 1 \pmod{3}$ and thus $3 \mid \sigma(p^2)$. The exponent of the prime 3 is then large, so that $\Omega(N)$ is significantly greater than $2\omega(N)$.

Now we detail the number of certain types of factors of N and obtain the results by contradiction with the involved quantities.

- $p = \omega(N)$: number of distinct prime factors,
- $f = \Omega(N)$: total number of prime factors,
- p_2: number of distinct prime factors with exponent 2, distinct from 3,
- $p_{2,1}$: number of distinct prime factors with exponent 2 congruent to 1 mod 3,
- p_4: number of distinct prime factors with exponent at least 4, distinct from 3 and the special prime,
- f_4: total number of prime factors with exponent at least 4, distinct from 3 and the special prime,
- e: exponent of the special prime,
- f_3: exponent of the prime 3.

Now we obtain useful inequalities among these quantities. The special exponent is at least 1:

(1) \[1 \leq e. \]

By detailing the total number of prime factors, we have

(2) \[e + f_3 + 2p_2 + f_4 = f. \]

By considering the prime factors (distinct from 3 and the special prime) with exponent at least 4, we have

(3) \[4p_4 \leq f_4. \]

As already mentioned, if $p \equiv 1 \pmod{3}$ and $p^2 \parallel N$, then $3 \mid \sigma(p^2)$, so that

(4) \[p_{2,1} \leq f_3. \]

Let us consider the number of distinct prime factors. We have the special prime, the primes from p_2 and p_4, and maybe the prime 3. So it is $1 + p_2 + p_4$ if $f_3 = 0$ and $2 + p_2 + p_4$ if $f_3 \geq 2$. Thus, we have

(5) \[p \leq f_3/2 + 1 + p_2 + p_4 \]

and

(6) \[p \leq 2 + p_2 + p_4. \]
For the sake of contradiction, we suppose that

\[(7) \quad 7f \leq 18p - 32.\]

The following lemma is useful to obtain one last inequality:

Lemma 3. Let \(p, q, \) and \(r \) be positive integers. If \(p^2 + p + 1 = r \) and \(q^2 + q + 1 = 3r \), then \(p \) is not an odd prime.

Proof. Since \(q^2 + q + 1 \equiv 0 \mod 3 \), then \(q \equiv 1 \mod 3 \) and we set \(q = 3s + 1 \). The equality \(q^2 + q + 1 = 3(p^2 + p + 1) \) reduces to \(3s(s+1) = p(p+1) \). Notice that \(p \) divides \(3s(s+1) \), so that if \(p \) is an odd prime, then either \(p \mid 3 \), \(p \mid s \), or \(p \mid (s+1) \).

We have \(p = 3 \) in the first case, which gives no solution. We have \(s \geq p - 1 \) in the other two cases, so that \(p(p+1) = 3s(s+1) \geq 3(p-1)p \). This gives \(p+1 \geq 3(p-1) \), so that \(p \leq 2 \), which is a contradiction. \(\square \)

Let \(K \) be the multiset of all the primes distinct from 3 produced by all the components \(\sigma(p^2) \) of \(N \). The primes in \(K \) are 1 mod 3, so \(|K| \leq e + 2p_{2,1} + f_4 \). For a prime \(u > 3 \), let \(\alpha(u) \) be such that \(\alpha(u) = \sigma(u^2) \) if \(u \equiv 2 \mod 3 \) and \(\alpha(u) = \sigma(u^2)/3 \) if \(u \equiv 1 \mod 3 \). By Lemma 3, \(\alpha(u) = \alpha(v) \) implies \(u = v \). So all primes from \(p_2 \) produce at least two prime factors, except for at most one per distinct prime from \(K \). That is, \(2p_2 - 1 - p_{2,1} - p_4 \leq |K| \). Thus, we have \(2p_2 - 1 - p_{2,1} - p_4 \leq e + 2p_{2,1} + f_4 \), which gives

\[(8) \quad 2p_2 \leq 1 + e + 3p_{2,1} + p_4 + f_4.\]

The combination \(5 \times (1) + 7 \times (2) + 5 \times (3) + 6 \times (4) + 2 \times (5) + 16 \times (6) + (7) + 2 \times (8) \) gives \(1 \leq 0 \), a contradiction. This means that for assumption (7) that \(7f \leq 18p - 32 \) is false, and thus \(\Omega(N) \geq (18\omega(N) - 31)/7 \).

4. **Proof of** \(\Omega(N) \geq 2\omega(N) + 51 \)

We use the general method and the computer program discussed in [4].

We use the following contradictions:

- The abundancy of the current number is strictly greater than 2.
- The current number \(n \) satisfies \(\Omega(n) \geq 2\omega(n) + 51 \).

We forbid the factors in \(S = \{3, 5, 7, 11, 13, 17, 19\} \), in this order. We branch on the smallest available prime congruent to 1 mod 3. If there is no such prime, we branch on the smallest available prime congruent to 2 mod 3. We still use a combination of exact branchings and standard branchings, as in [4]. We use exact branchings only for the special components \(p^1 \) and for all the even powers \(3^{2e} \) of 3.

By-passing roadblocks. A roadblock is a situation such that there is no contradiction and no possibility to branch on a prime. This happens when we have already made suppositions for the multiplicity of all the known primes and the other numbers are composites.

Given a roadblock \(M \), we check that the composites involved are not divisible by an already considered prime, are not perfect powers, have no factor less than \(10^{10} \), and are pairwise coprime. Then we compute the following quantities:

- **F**: It is a lower bound on the number of distinct prime factors of \(M \). We count the number of known prime factors of \(M \) plus two primes per composite number.
• **A**: It is an upper bound on the abundancy of M. For the abundancy of a component p^k, we use $\sigma_1(p^k)$ for an exact branching and $\sigma_1(p^\infty) = p/(p - 1)$ for a standard branching.

 For a composite C, we know that C has at most \(\left\lfloor \frac{\ln C}{10\ln 10} \right\rfloor\) prime factors since C has no factor less than 10^{10}. So, the abundancy due to C is at most $(1 + 10^{-10})^{\left\lfloor \frac{\ln C}{10\ln 10} \right\rfloor}$.

• **T**: It is the target lower bound on $\Omega(N) - 2\omega(N)$, thus an odd integer. We use $T = 51$ in the proof of Theorem 2.

For the sake of contradiction, we suppose that $\Omega(N) - 2\omega(N) \leq T - 2$. By Theorem 1, we have $\Omega(N) \geq (18\omega(N) - 31)/7$. So $(18\omega(N) - 31)/7 - 2\omega(N) \leq \Omega(N) - 2\omega(N) \leq T - 2$, which gives $\omega(N) \leq (7T + 17)/4$. Thus, N has at most $\omega(N) \leq (7T + 17)/4 - F$ prime factors that do not divide M. Let p be the smallest of these extra factors. We see that if

\[(9) \quad A(p/(p - 1))^{(7T + 17)/4 - F} < 2,
\]

then N cannot reach abundancy 2. This gives an upper bound on p. To get around the roadblock, we branch on every prime number p (except those that divide M or are already forbidden) in increasing order until (9) is satisfied.

Example.

\[3^4 \implies 11^2\]

\[11^{18} \implies 6115909044841454629\]

\[6115909044841454629^{16} \implies \sigma(6115909044841454629^{16}) \quad \text{Roadblock 1}\]

\[5^1 \implies 2 \times 3 \quad \text{Roadblock 2}\]

We first branch on the components 3^4, 11^{18}, and $\sigma(11^{18})^{16}$ and hit a first roadblock, as no factors of $C_1 = \sigma(\sigma(11^{18})^{16})$ are known. When trying to get around this roadblock, we first branch on 5^1 and hit a second roadblock. Consider this second roadblock:

• **F** = 6: We have the four primes 3, 5, 11, $\sigma(11^{18})$, and at least two primes from C_1.

• $A = \sigma_1\left(3^4 \times 5 \times 11^\infty \times \sigma(11^{18})^\infty\right) \times (1 + 10^{-10})^{\left\lfloor \frac{\ln C}{10\ln 10} \right\rfloor} = 1.9718518 \ldots$.

• **T** = 51.

Equation (9) is satisfied for $p \geq 6174$, so to circumvent M, we branch on every prime p between 7 and 6173, except 11.

When N has no factors in S. If N has no factor in S, then it must have at least 115 distinct prime factors. We obtain this by considering the product

\[\prod_{23 \leq p \leq 673} \frac{p^2 - 1}{p - 1} = 1.99807632 \ldots \]

over the first 114 primes p greater than 19, which is an upper bound on the abundancy and is smaller than 2.

Using Theorem 1, we obtain

\[\Omega(N) - 2\omega(N) \geq (18\omega(N) - 31)/7 - 2\omega(N)\]

\[= (4\omega(N) - 31)/7\]

\[\geq (4 \times 115 - 31)/7\]

\[= 61 + 2/7.\]

So, we have $\Omega(N) \geq 2\omega(N) + 62$, which concludes the proof of Theorem 2.
ACKNOWLEDGMENT

We thank Robert Gerbicz for a much simpler proof of Lemma [3]

REFERENCES

CNRS, LIRMM, Université Montpellier 2, 161 rue Ada, 34095 Montpellier Cedex 5, France
E-mail address: ochem@lirmm.fr

CNRS, LIP, ENS Lyon, 15 parvis R. Descartes BP 7000, 69342 Lyon Cedex 07, France
E-mail address: michael.rao@ens-lyon.fr