## Algorithms for strongly stable ideals

HTML articles powered by AMS MathViewer

- by Dennis Moore and Uwe Nagel PDF
- Math. Comp.
**83**(2014), 2527-2552 Request permission

## Abstract:

Strongly stable monomial ideals are important in algebraic geometry, commutative algebra, and combinatorics. Prompted, for example, by combinatorial approaches for studying Hilbert schemes and the existence of maximal total Betti numbers among saturated ideals with a given Hilbert polynomial, in this paper we present three algorithms to produce*all*strongly stable ideals with certain prescribed properties: the saturated strongly stable ideals with a given Hilbert polynomial, the almost lexsegment ideals with a given Hilbert polynomial, and the saturated strongly stable ideals with a given Hilbert function. We also establish results for estimating the complexity of our algorithms.

## References

- David Allen Bayer,
*THE DIVISION ALGORITHM AND THE HILBERT SCHEME*, ProQuest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)–Harvard University. MR**2632095** - David Bayer and Michael Stillman,
*A criterion for detecting $m$-regularity*, Invent. Math.**87**(1987), no. 1, 1–11. MR**862710**, DOI 10.1007/BF01389151 - Anna Maria Bigatti,
*Upper bounds for the Betti numbers of a given Hilbert function*, Comm. Algebra**21**(1993), no. 7, 2317–2334. MR**1218500**, DOI 10.1080/00927879308824679 - G. Caviglia, S. Murai,
*Sharp upper bounds of the Betti numbers for a given Hilbert polynomial*, Algebra Number Theory, to appear - Francesca Cioffi, Paolo Lella, Maria Grazia Marinari, and Margherita Roggero,
*Segments and Hilbert schemes of points*, Discrete Math.**311**(2011), no. 20, 2238–2252. MR**2825669**, DOI 10.1016/j.disc.2011.07.011 - David Eisenbud,
*Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR**1322960**, DOI 10.1007/978-1-4612-5350-1 - Shalom Eliahou and Michel Kervaire,
*Minimal resolutions of some monomial ideals*, J. Algebra**129**(1990), no. 1, 1–25. MR**1037391**, DOI 10.1016/0021-8693(90)90237-I - Christopher A. Francisco, Jeffrey Mermin, and Jay Schweig,
*Borel generators*, J. Algebra**332**(2011), 522–542. MR**2774702**, DOI 10.1016/j.jalgebra.2010.09.042 - K. Gehrs,
*On stable monomial ideals*, Diploma Thesis, University of Paderborn, 2003. - Gerd Gotzmann,
*Eine Bedingung für die Flachheit und das Hilbertpolynom eines graduierten Ringes*, Math. Z.**158**(1978), no. 1, 61–70 (German). MR**480478**, DOI 10.1007/BF01214566 - D. Grayson, M. Stillman,
*Macaulay2, a software system for research in algebraic geometry*, Available at http://www.math.uiuc.edu/Macaulay2/. - Mark L. Green,
*Generic initial ideals*, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 119–186. MR**1648665** - Mark Green,
*Restrictions of linear series to hyperplanes, and some results of Macaulay and Gotzmann*, Algebraic curves and projective geometry (Trento, 1988) Lecture Notes in Math., vol. 1389, Springer, Berlin, 1989, pp. 76–86. MR**1023391**, DOI 10.1007/BFb0085925 - Robin Hartshorne,
*Connectedness of the Hilbert scheme*, Inst. Hautes Études Sci. Publ. Math.**29**(1966), 5–48. MR**213368** - Robin Hartshorne,
*Algebraic geometry*, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR**0463157** - Jürgen Herzog and Takayuki Hibi,
*Componentwise linear ideals*, Nagoya Math. J.**153**(1999), 141–153. MR**1684555**, DOI 10.1017/S0027763000006930 - Jürgen Herzog and Takayuki Hibi,
*Monomial ideals*. Grad. Texts in Math.**260**, Springer, 2011. - Heather A. Hulett,
*Maximum Betti numbers of homogeneous ideals with a given Hilbert function*, Comm. Algebra**21**(1993), no. 7, 2335–2350. MR**1218501**, DOI 10.1080/00927879308824680 - Satoshi Murai and Takayuki Hibi,
*The depth of an ideal with a given Hilbert function*, Proc. Amer. Math. Soc.**136**(2008), no. 5, 1533–1538. MR**2373580**, DOI 10.1090/S0002-9939-08-09067-9 - Satoshi Murai and Takayuki Hibi,
*Gotzmann ideals of the polynomial ring*, Math. Z.**260**(2008), no. 3, 629–646. MR**2434473**, DOI 10.1007/s00209-007-0293-2 - Uwe Nagel,
*Comparing Castelnuovo-Mumford regularity and extended degree: the borderline cases*, Trans. Amer. Math. Soc.**357**(2005), no. 9, 3585–3603. MR**2146640**, DOI 10.1090/S0002-9947-04-03595-0 - R. Notari and M. L. Spreafico,
*A stratification of Hilbert schemes by initial ideals and applications*, Manuscripta Math.**101**(2000), no. 4, 429–448. MR**1759253**, DOI 10.1007/s002290050225 - Keith Pardue,
*Deformation classes of graded modules and maximal Betti numbers*, Illinois J. Math.**40**(1996), no. 4, 564–585. MR**1415019** - Alyson April Reeves,
*Combinatorial structure on the Hilbert scheme*, ProQuest LLC, Ann Arbor, MI, 1992. Thesis (Ph.D.)–Cornell University. MR**2688239** - Alyson A. Reeves,
*The radius of the Hilbert scheme*, J. Algebraic Geom.**4**(1995), no. 4, 639–657. MR**1339842** - Alyson Reeves and Mike Stillman,
*Smoothness of the lexicographic point*, J. Algebraic Geom.**6**(1997), no. 2, 235–246. MR**1489114** - G. Valla,
*On the Betti numbers of perfect ideals*, Compositio Math.**91**(1994), no. 3, 305–319. MR**1273653**

## Additional Information

**Dennis Moore**- Affiliation: Department of Mathematics, University of Kentucky, 715 Patterson Office Tower, Lexington, Kentucky 40506-0027
- Email: dennikm@gmail.com
**Uwe Nagel**- Affiliation: Department of Mathematics, University of Kentucky, 715 Patterson Office Tower, Lexington, Kentucky 40506-0027
- MR Author ID: 248652
- Email: uwe.nagel@uky.edu
- Received by editor(s): October 12, 2011
- Received by editor(s) in revised form: January 9, 2013
- Published electronically: January 6, 2014
- Additional Notes: This work was partially supported by a grant from the Simons Foundation (#208869 to Uwe Nagel).

The authors were also partially supported by the National Security Agency under Grant Number H98230-09-1-0032. - © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**83**(2014), 2527-2552 - MSC (2010): Primary 14Q20, 13P99
- DOI: https://doi.org/10.1090/S0025-5718-2014-02784-1
- MathSciNet review: 3223345