Period computations for covers of elliptic curves
HTML articles powered by AMS MathViewer
- by Simon Rubinstein-Salzedo;
- Math. Comp. 83 (2014), 2455-2470
- DOI: https://doi.org/10.1090/S0025-5718-2014-02797-X
- Published electronically: January 13, 2014
- PDF | Request permission
Abstract:
In this article, we construct algebraic equations for a curve $C$ and a map $f$ to an elliptic curve $E$, with pre-specified branching data. We do this by determining certain relations that the periods of $C$ and $E$ must satisfy and using these relations to approximate the coefficients to high precision. We then conjecture which algebraic numbers the coefficients are, and then we prove this conjecture to be correct.References
- A. Baker, Linear forms in the logarithms of algebraic numbers. I, II, III, Mathematika 13 (1966), 204–216; ibid. 14 (1967), 102–107; ibid. 14 (1967), 220–228. MR 220680, DOI 10.1112/s0025579300003843
- D. H. Bailey and J. M. Borwein, High-precision numerical integration: progress and challenges, J. Symbolic Comput. 46 (2011), no. 7, 741–754. MR 2795208, DOI 10.1016/j.jsc.2010.08.010
- Sybilla Beckmann, Ramified primes in the field of moduli of branched coverings of curves, J. Algebra 125 (1989), no. 1, 236–255. MR 1012673, DOI 10.1016/0021-8693(89)90303-7
- Jonathan M. Borwein and Petr Lisoněk, Applications of integer relation algorithms, Discrete Math. 217 (2000), no. 1-3, 65–82 (English, with English and French summaries). Formal power series and algebraic combinatorics (Vienna, 1997). MR 1766260, DOI 10.1016/S0012-365X(99)00256-3
- Enrico Bombieri and Alfred J. van der Poorten, Continued fractions of algebraic numbers, Computational algebra and number theory (Sydney, 1992) Math. Appl., vol. 325, Kluwer Acad. Publ., Dordrecht, 1995, pp. 137–152. MR 1344927
- Jean-Marc Couveignes and Louis Granboulan, Dessins from a geometric point of view, The Grothendieck theory of dessins d’enfants (Luminy, 1993) London Math. Soc. Lecture Note Ser., vol. 200, Cambridge Univ. Press, Cambridge, 1994, pp. 79–113. MR 1305394
- Pierre Dèbes and Jean-Claude Douai, Algebraic covers: field of moduli versus field of definition, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 3, 303–338 (English, with English and French summaries). MR 1443489, DOI 10.1016/S0012-9593(97)89922-3
- Simon Donaldson, Riemann surfaces, Oxford Graduate Texts in Mathematics, vol. 22, Oxford University Press, Oxford, 2011. MR 2856237, DOI 10.1093/acprof:oso/9780198526391.001.0001
- Frank Herrlich and Gabriela Schmithüsen, Dessins d’enfants and origami curves, Handbook of Teichmüller theory. Vol. II, IRMA Lect. Math. Theor. Phys., vol. 13, Eur. Math. Soc., Zürich, 2009, pp. 767–809. MR 2516744, DOI 10.4171/055-1/19
- Fredrik Johansson et al., mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.14), February 2010, http://code.google.com/p/mpmath/.
- Maxim Kontsevich and Don Zagier, Periods, Mathematics unlimited—2001 and beyond, Springer, Berlin, 2001, pp. 771–808. MR 1852188
- A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534. MR 682664, DOI 10.1007/BF01457454
- Curtis T. McMullen, Teichmüller curves in genus two: the decagon and beyond, J. Reine Angew. Math. 582 (2005), 173–199. MR 2139715, DOI 10.1515/crll.2005.2005.582.173
- PARI/GP, version 2.3.5, Bordeaux, 2010, http://pari.math.u-bordeaux.fr/.
- David P. Roberts, An $ABC$ construction of number fields, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 237–267. MR 2076600, DOI 10.1090/crmp/036/19
- Simon Rubinstein-Salzedo, Controlling ramification in number fields, 2012, Ph.D. thesis, http://www.math.dartmouth.edu/~simon/thesis.pdf.
- Simon Rubinstein-Salzedo, Covers of elliptic curves with unique, totally ramified branch points, Mathematische Nachrichten, 2013, DOI 10.1002/mana.201200285.
- W. A. Stein et al, Sage Mathematics Software (Version 4.5.1), The Sage Development Team, 2010, http://www.sagemath.org.
- SymPy Development Team, SymPy: Python library for symbolic mathematics, 2012.
- Wolfram Research, Inc., Champaign, Illinois, Mathematica, Version 6.0.1.0, 2007.
- Anton Zorich, Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437–583. MR 2261104, DOI 10.1007/978-3-540-31347-2_{1}3
Bibliographic Information
- Simon Rubinstein-Salzedo
- Affiliation: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
- Email: simon.rubinstein-salzedo@dartmouth.edu
- Received by editor(s): October 17, 2012
- Received by editor(s) in revised form: January 17, 2013, and January 28, 2013
- Published electronically: January 13, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 83 (2014), 2455-2470
- MSC (2010): Primary 11G32, 11J70, 14H30, 14H52, 14Q05
- DOI: https://doi.org/10.1090/S0025-5718-2014-02797-X
- MathSciNet review: 3223341