
MATHEMATICS OF COMPUTATION
Volume 83, Number 289, September 2014, Pages 2403–2427
S 0025-5718(2014)02798-1
Article electronically published on January 6, 2014

FINITE DIFFERENCE WEIGHTS, SPECTRAL
DIFFERENTIATION, AND SUPERCONVERGENCE

BURHAN SADIQ AND DIVAKAR VISWANATH

Abstract. Let z1, z2, . . . , zN be a sequence of distinct grid points. A finite
difference formula approximates the m-th derivative f (m)(0) as

∑
wkf (zk),

with wk being the weight at zk. We derive an algorithm for finding the weights
wk which uses fewer arithmetic operations and less memory than the algo-
rithm in current use (Fornberg, Mathematics of Computation, vol. 51 (1988),
pp. 699-706). The algorithm we derive uses fewer arithmetic operations by a
factor of (5m + 5)/4 in the limit of large N . The optimized C++ implemen-
tation we describe is a hundred to five hundred times faster than MATLAB.
The method of Fornberg is faster by a factor of five in MATLAB, however,
and thus remains the most attractive option for MATLAB users.

The algorithm generalizes easily to the calculation of spectral differentiation
matrices, or equivalently, finite difference weights at several different points
with a fixed grid. Unlike the algorithm in current use for the calculation
of spectral differentiation matrices, the algorithm we derive suffers from no
numerical instability.

The order of accuracy of the finite difference formula for f (m)(0) with grid
points hzk, 1 ≤ k ≤ N , is typically O

(
hN−m

)
. However, the most commonly

used finite difference formulas have an order of accuracy that is higher than nor-
mal. For instance, the centered difference approximation (f(h)−2f(0)+f(−h))
/h2 to f ′′(0) has an order of accuracy equal to 2 not 1. Even unsymmetric
finite difference formulas can exhibit such superconvergence or boosted order
of accuracy, as shown by the explicit algebraic condition that we derive. If the
grid points are real, we prove a basic result stating that the order of accuracy
can never be boosted by more than 1.

1. Introduction

Since the beginning of the subject, finite difference methods have been widely
used for the numerical solution of partial differential equations. Finite difference
methods are easier to implement than finite element or spectral methods. For han-
dling irregular domain geometry, finite difference methods are better than spectral
methods but not as flexible as finite element discretizations.

The basic problem in designing finite difference discretizations is to approximate
f (m)(0), the m-th derivative of the function f(z) at z = 0, using function values
at the grid points hz1, hz2, . . . , hzN . The grid points can be taken as z1, . . . , zN by
setting the mesh parameter h = 1. We make the mesh parameter h explicit where
necessary but suppress it otherwise. The finite difference formula can be given as

Received by the editor July 20, 2012 and, in revised form, December 22, 2012 and January 17,
2013.

2010 Mathematics Subject Classification. Primary 65D05, 65D25.
The authors were supported by NSF grants DMS-0715510, DMS-1115277, and SCREMS-

1026317.

c©2014 American Mathematical Society

2403

http://www.ams.org/mcom/
http://www.ams.org/jourcgi/jour-getitem?pii=S0025-5718-2014-02798-1

2404 BURHAN SADIQ AND DIVAKAR VISWANATH

either

(1.1) fm(0) ≈ w1,mf (z1) + · · · + wN,mf (zN)

or

(1.2) f (m) (0) ≈ w1,mf (hz1) + · · · + wN,mf (hzN)
hm

.

If we require (1.2) to have an error that is O
(
hN−m

)
for smooth f , the choice of

the weights wk,m, 1 ≤ k ≤ N , is unique (see Section 5). The grid points are always
assumed to be distinct.

Some finite difference formulas such as the centered difference approximations to
f ′(0) and f ′′(0)—(f(h) − f(−h)) /2h and (f(h) − 2f(0) + f(−h)) /h2, respectively,
occur very commonly and are part of the bread and butter of scientific computation.
The most common finite difference formulas presuppose an evenly spaced grid.
However, evenly spaced grids are often inadequate. In applications, it is frequently
necessary to make the grid finer within boundary layers or internal layers where
the underlying phenomenon is characterized by rapid changes. In addition, evenly
spaced grids do not lend themselves to adaptive mesh refinement. For these reasons,
it is often necessary to use grids that are not evenly spaced.

Fornberg [5–7] devised an algorithm for determining the weights wi,m given the
grid points zk. The starting point of his derivation was the Lagrange interpolant,
which we now turn to.

There exists a unique polynomial π(z) of degree N − 1 which satisfies the inter-
polation conditions π(zk) = fk for k = 1 . . . N ; see [4]. The Lagrange form of this
interpolating polynomial is given by

(1.3) π(z) =
N∑

k=1

wkπk(z)fk where πk(z) =
∏

j �=k

(z − zj) and wk = 1/πk(zk),

where wk is Lagrange weight at zk. The finite difference weight wk,m is equal to
the coefficient of zm in wkπk(z) times m! (see Section 8). The computation of the
Lagrange weights wk takes 2N2 arithmetic operations roughly half of which are
multiplications and half are additions or subtractions.

In effect, Fornberg’s algorithm [5] is to multiply the binomials (z − zj) using
a recursion to determine the coefficient of zm in the Lagrange cardinal function
wkπk(z). The algorithm is not presented in this way in [5]. Instead it is organized
to yield the finite difference weights for partial lists of grid points z1, . . . , zk with
k increasing from 1 to N . The exact operation count for Fornberg’s algorithm is
given in Section 3. The method of partial products derived in Section 3 always uses
fewer arithmetic operations. The operation count is lower by a factor of (5m+5)/4,
where m is the order of the derivative, in the limit of large N . Carefully timed trials
in Section 7 show that it is faster in practice.

The polynomial π(z) displayed in (1.3) is the Lagrange form of the interpolant
as already stated. Another form of the polynomial interpolant is the Newton series.
Most of the textbooks in numerical analysis recommend the Newton form over the
Lagrange form believing the Newton form to be more accurate or more efficient.
The beliefs are mistaken. In an expository paper, Berrut and Trefethen [1] have co-
gently summarized and clarified arguments showing that the Lagrange interpolant,
if implemented correctly, is more efficient and has much better numerical stability.
The Lagrange interpolant is also useful for root-finding; see [3] .

FINITE DIFFERENCE WEIGHTS 2405

In their discussion, Berrut and Trefethen [1] show that it is advantageous to
think of the weights wk and the polynomials πk(z) which occur in (1.3) separately.
The key idea in the method of partial products, which is derived in Section 3, is
to think of the Lagrange weights wk =

∏
j �=k(zk − zj)−1 separately from πk(z) =

∏
j �=k(z − zj), which is a product of the binomials z − zj .
The method of partial products gets its name because it is based on the following

partial products:

lk(z) =
k∏

j=1
(z − zj) and rk(z) =

N∏

j=k

(z − zj).

By convention, l0 ≡ rN+1 ≡ 1. For k = 1, . . . , N , coefficients of these partial
products are computed up to the zM term using recursions. Since πk = lk−1rk+1,
the finite difference weights wk,m for m = 0, . . . ,M , are obtained by convolving the
coefficients of lk−1 and rk+1 followed by a multiplication by m! and the Lagrange
weight wk.

At first, forming partial products may seem roundabout. A more direct and
more efficient approach would be to form the product

(1.4) p(z) =
N∏

j=1
(z − zj)

up to the (M+1)-st power, where M is the order of the derivative, and then calculate
the coefficient of zM in πk(z) using πk = (z− zk)−1p(z). However, there are subtle
issues of numerical stability at play here. The direct method outlined suffers from
a numerical instability whose harmful effect on accuracy increases exponentially in
M . The method of partial products, on the other hand, seems to have very good
numerical stability (see Section 6). A discussion of the subtle issues of numerical
stability at play is given in Section 2.

When spectral differentiation matrices are computed, the grid z1, . . . , zN is fixed.
However, the finite difference weights are required at each of the grid points and
not just at z = 0 as we assumed in the discussion following (1.3). The algorithm in
current use for this problem [13,14] suffers from a numerical instability that worsens
exponentially in M , where M is the order of the derivative, as shown in Section 6.
This instability appears identical to that of the method based on the product (1.4)
outlined in the previous paragraph. The key observation for computing spectral
differentiation matrices using the method of partial products is that the Lagrange
weights wk do not change at all if the grid z1, . . . , zN is shifted to z1−ζ, . . . , zN −ζ.
Supported by this observation, the method of partial products can compute spectral
differentiation matrices in cost comparable to the method of Welfert [14] but with
no numerical instability. The computation of spectral differentiation matrices using
partial products is described in Section 4.

If the number of grid points is N and the order of the derivative is m, the finite
difference weights are unique if the difference formula is required to be O

(
hN−m

)

(see Section 5). For certain grids, these unique weights imply an error of O
(
hN−m+1),

which is of higher order than what is typical for N grid points and the m-th deriv-
ative. We term this as superconvergence or boosted order of accuracy.

Finite difference formulas that exhibit superconvergence or boosted order of ac-
curacy have been quite popular. The centered difference formulas for f ′(0) and

2406 BURHAN SADIQ AND DIVAKAR VISWANATH

f ′′(0) are only two examples. Yet there is little clarity about what causes such
boosted order of accuracy. There is an incorrect folklore belief that boosted order
of accuracy has something to do with the symmetry of the grid.

In Section 5, we clarify the situation completely and give explicit conditions for
boosted order of accuracy. The finite difference approximation (1.2) to f (m)(0) has
an order of accuracy boosted by 1 if and only if

SN−m = 0,

where Sk is the elementary symmetric function
∑

1≤i1<···<ik≤N

zi1...zik .

If the grid points are real, we prove that the order of accuracy cannot be boosted
by more than 1.

For the special case m = 2, the finite difference approximation to the second
derivative at z = 0 using three grid points has an order of accuracy equal to 2,
which is a boost of 1, if and only if the grid points satisfy z1+z2+z3 = 0. Evidently,
this condition is satisfied by the grid points −1, 0, 1 used by the centered difference
formula. An unsymmetric choice of grid points such as −3, 1, 2 also boosts the order
of accuracy by 1. However, no choice of z1, z2, and z3 on the real line can boost
the order of accuracy by more than 1.

With four grid points and m = 2, the condition for a boost in the order of
accuracy is

z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 = 0.

No choice of z1, z2, z3, and z3 on the real line can boost the order of accuracy of the
finite difference approximation to f ′′(0) by more than 1. The maximum possible
order of accuracy is 3. In this case, a symmetric choice of grid points such as
−2, −1, 1, 2 does not boost the order of accuracy. Unsymmetric grid points that
boost the order of accuracy to 3 can be found easily. For example, the order of
accuracy is 3 for the grid points −2/3, 0, 1, 2.

These results about superconvergence or boosted order of accuracy of finite dif-
ference formulas are quite basic. It is natural to suspect that they may have been
discovered a long time ago. However, the results are neither stated nor proved in
any source that we know of.

If the grid points zi are allowed to be complex, the order of accuracy can be
boosted further but not by more than m. The order of accuracy is boosted by k
with 1 ≤ k ≤ m if and only if

SN−m = SN−m+1 = · · · = SN−m+k−1 = 0.

For complex grid points, the maximum boost in the order of accuracy is obtained
when the grid points are arranged symmetrically on a circle centered at 0, with 0
being the point at which the derivative is to be approximated.1 An algorithm to
detect the order of accuracy and compute the error constant of the finite difference
formula (1.2) is given in Section 5.

1We thank Professor Jeffrey Rauch for this observation.

FINITE DIFFERENCE WEIGHTS 2407

2. From roots to coefficients

Given α1, . . . , αN , the problem is to determine the coefficients of a polynomial
of degree N whose roots are α1, . . . , αN . The polynomial is evidently given by
∏N

k=1(z − αk). If the product
∏n

k=1(z − αk) is given by c0 + c1z + · · · + zn, then
the coefficients c′0, c

′
1, . . . of the product

∏n+1
k=1(z − αk) are formed using

(2.1) c′0 = −c0αn+1 and c′m = −cmαn+1 + cm−1 for m = 1, 2,

All algorithms to compute finite difference weights come down to multiplying
binomials of the form (z − zk) and extracting coefficients from the product. The
numerical stability of multiplying binomials, or equivalently of going from roots
of a polynomial to its coefficients, has aspects that are not obvious at first sight.
A dramatic example is the product

(
z − ω0) (z − ω1) . . .

(
z − ωN−1) where ω =

exp(2πi/N). Mathematically the answer is zN −1. Numerically the error is as high
as 1015 for N = 128 in double precision arithmetic [2]. For numerical stability, the
binomials must be ordered using the bit reversed ordering or the Leja ordering or
some other scheme as shown by Calvetti and Reichel [2]. The roots must be ordered
in such a way that the coefficients of intermediate products are not too large. If N
is large, the first several ωi are close to 1 leading to partial products which resemble
(z − 1)n and have coefficients that are of the order of the binomial coefficients. In
contrast, the complete product is simply zN − 1.

This matter of ordering the roots carefully is equivalent to choosing a good
order of grid points when determining finite difference weights. Good ordering of
grid points may improve accuracy but is not as important as it is in the general
problem of determining coefficients from roots. When determining finite difference
weights for a derivative of order M , we need coefficients of terms 1, z, . . . , zM but no
higher. The most dramatic numerical instabilities in determining coefficients occur
near the middle of the polynomial, but M , which is the order of differentiation,
will not be large in the determination of finite difference weights. Nevertheless, the
instability which results if grid points are not ordered properly is noticeable even
for M = 2 and can be quite harmful if M = 4 or M = 8 if we use Chebyshev points
with N = 128, for instance.

The recurrence (2.1) may be used to multiply binomials only if the roots have
been ordered. It might seem better to use a method that does not impose an
ordering on the roots. We derive such a method below, but find it to be numer-
ically unstable. The cause of numerical instability is once again relevant to the
computation of finite difference weights.

Let

Pr =
N∑

k=1

α−r
k ,

Er =
∑

1≤i1<···<ir≤N

(αi1 . . . αir)
−1 .

By the Newton identities

E1 = P1,

2E2 = E1P1 − P2,

3E3 = E2P1 − E1P2 + P3,

2408 BURHAN SADIQ AND DIVAKAR VISWANATH

and so on. By convention, E0 = 1. The algorithm begins by computing the power
sums P1, . . . ,PM directly and uses the Newton identities to compute the elementary
symmetric functions Er, 0 ≤ r ≤ M . The coefficients are obtained using

cr = (−1)N+r−1Er
N∏

k=1

αk.

This algorithm does not really presuppose an ordering of the αk and the computa-
tion of the power sums Pr is backward stable, and especially so if compensated sum-
mation is used [9]. If this method is used to compute the product

∏N
k=1

(
z − ωk−1),

where ω is as before, it finds the coefficients of the product with excellent accuracy.
But in general this method is inferior to the repeated use of (2.1) after choosing a
good ordering of the roots αk.

Why is a method which appears so natural numerically unstable? The culprit is
the use of Newton identities. The Newton identities evidently have the structure of
triangular back substitution, as the elementary symmetric functions E1, . . . , Ek are
used to compute Ek+1. Thus, in effect, the Newton identities are inverting a trian-
gular matrix. Unfortunately, triangular matrices typically have condition numbers
that increase exponentially in the dimension of the matrix [12]. For example, a tri-
angular matrix with independent standard normal entries has a condition number
that increases as 2n, where n is the dimension of the matrix [12]. The triangular
matrix that is implicit in the Newton identities will not follow any of the random
distributions considered in [12]. However, the conclusion that triangular matrices
are exponentially ill-conditioned still applies.

In the computation of finite difference weights, it is often tempting to divide by
a polynomial. For example, the polynomial πk(z) that appears in the Lagrange
interpolant π(z) in (1.3) may be obtained by forming the product

∏N
j=1(z− zj) up

to whatever power is desired and then dividing by (z−zk) for each k. This division
operation involves back substitution and is a source of numerical instability for the
reason given in the previous paragraph.

Suppose a0 + a1z + · · · = (z − α)−1 (b0 + b1z + · · ·). To find the aj in terms of
the bj the following equations may be used (assuming α �= 0):

a0 = −b0/α,

aj = (aj−1 − bj)/α for j = 1, 2,

The equation for calculating aj evidently uses aj−1. Thus the equations are implic-
itly using back substitution to invert a bi-diagonal triangular matrix. In contrast,
(2.1) does not use any one of c′0, . . . , c′m−1 to compute c′m and is therefore numeri-
cally stable if the grid points are ordered following the prescriptions of Calvetti and
Reichel [2].

In this section, we have discussed numerical instabilities that arise when binomi-
als are multiplied and when a polynomial is divided by a binomial. The first of these
instabilities is overcome by ordering the grid points carefully. The method of par-
tial products for computing finite difference weights, to which we now turn, avoids
back substitution entirely and is therefore not plagued by the second instability.

FINITE DIFFERENCE WEIGHTS 2409

3. Finite difference weights using partial products

Let the grid points be z1, . . . , zN and let f1, . . . , fN be the function values at the
grid points. Define

(3.1) πk(z) =
N∏

j �=k

(z − zj).

Then the Lagrange interpolant shown in (1.3) is π(z) =
∑N

k=1 wkπk(z)fk. The
Lagrange weight wk equals 1/πk(zk). Our objective is to derive formulas for
dmπ(z)/dzm at z = 0 for m = 1, . . . ,M . The m = 0 case is regular Lagrange
interpolation. The weights wk will be assumed to be known. The formulas for
dmπ(z)/dzm at z = 0 will be linear combinations of fk with weights. We assume
1 ≤ M ≤ N − 1.

If the coefficient of zm in πk(z) is denoted by ck,m, we have

dmπ(z)
dzm

∣
∣
∣
∣
∣
z=0

= m!
N∑

k=1

ck,mwkfk.

The finite difference weights are then given by

(3.2) wk,m = m!wkck,m.

Once the ck,m are known, the weights wk,m are computed using (3.2) for k =
1, . . . , N and m = 1, . . . ,M .

In the Introduction, we mentioned the basic plan of our method for computing
finite difference weights. The basic plan is to separate the computation of the
Lagrange weights wk from that of the coefficients ck,m of πk(z), which is defined
as a product of binomials. This plan is already realized in (3.2) where wk and
ck,m occur separately in the formula for wk,m. To complete a description of the
algorithm, it suffices to show how the ck,m are computed, which we do presently.

Let lk(z) =
∏k

j=1(z − zj) and rk(z) =
∏N

j=k(z − zj). Denote the coefficients of
1, z, . . . , zM in lk(z) and rk(z) by Lk,0, . . . , Lk,M and Rk,0, . . . , Rk,M , respectively.
The coefficients Lk,m are computed in the order k = 1, 2, . . . , N . The coefficients
Rk,m are computed in the reverse order, which is k = N,N − 1, . . . , 1. It is evident
that πk(z), which is defined by (1.3) or (3.1), is equal to lk−1(z)rk+1(z). Therefore
the coefficient ck,m of zm in πk(z) can be obtained using

ck,m =
m∑

s=0
Lk−1,m−sRk+1,s.

The finite difference weight wk,m is obtained as m!wkck,m, where wk is the Lagrange
weight at zk.

Lemma 1. The number of arithmetic operations used by the method of partial
products (Algorithm 1) to compute the finite difference weights wk,m, 0 ≤ m ≤ M ,
1 ≤ k ≤ N , is fewer than 2N2 + NM2 + 8NM − 4M2 −N + 2M + 2.

Proof. The computation of Lagrange weights (function on line 1 and function call
on line 18 of Algorithm 1) uses 2N2 − 2N arithmetic operations.

The computation of Lk,m, the coefficients of lk(z), uses the MULTBINOM function
on line 7 called from line 21. For easier reading, Algorithm 1 treats each lk(z) as

2410 BURHAN SADIQ AND DIVAKAR VISWANATH

Algorithm 1 The method of partial products for finding finite difference weights
1: function LagrangeWeights(z1, . . . , zN ,w1, . . . , wN)
2: for i = 1, 2, . . . , N do
3: wi =

∏
j(zi − zj) over j = 1, . . . , N but j �= i.

4: wi = 1/wi

5: end for
6: end function
7: function multbinom(a0, . . . , aM ,b0, . . . , bM ,ζ)
8: b0 = −ζ a0
9: bm = −ζ am + am−1 for m = 1, . . . ,M

10: end function
11: function convolve(a0, . . . , aM ,b0, . . . , bM ,c0, . . . , cM)
12: cm = amb0 + am−1b1 + · · · + a0bm for m = 0, . . . ,M
13: end function
14: function FDWeights(z1, . . . , zN ,M,w1,M , . . . , wN,M)
15: Temporaries: w1, . . . , wN

16: Temporaries: Lk,m and and Rk,m for 0 ≤ k ≤ N + 1, 0 ≤ m ≤ M
17: Finite difference weights: wk,m for 1 ≤ k ≤ N and 0 ≤ m ≤ M
18: LagrangeWeights(z1, . . . , zN ,w1, . . . , wN)
19: L0,m = 1 for m = 0 and Lk,m = 0 for m = 1, . . . ,M
20: for k = 1, . . . , N − 1 do
21: multbinom(Lk−1,0, . . . , Lk−1,M ,Lk,0, . . . , Lk,M , zk)
22: end for
23: RN+1,m = 1 for m = 0 and RN+1,m = 0 for m = 1, . . . ,M .
24: for k = N,N − 1, . . . , 2 do
25: multbinom(Rk+1,0, . . . , Rk+1,M ,Rk,0, . . . , Rk,M ,zk)
26: end for
27: for k = 1, . . . , N do
28: Temporaries: ck,m
29: convolve(Lk−1,0, . . . , Lk−1,M ,Rk+1,0, . . . , Rk+1,M ,ck,0, . . . , ck,M)
30: wk,m = m!wkck,m for m = 0, . . . ,M or simply wk,M = M !wkck,M
31: end for
32: end function

being truncated at the M -th power. Since the degree of lk(z) is k, an implementa-
tion can truncate earlier for k < M . Multiplying a polynomial by a binomial of the
form (z−α) up to the k-th power costs fewer than 2k operations. The total cost for
computing lk, 1 ≤ k < N , is fewer than

∑M
n=1 2n+(N−M)(2M) = 2NM−M2+M

operations. The cost of computing rk, 1 < k ≤ N , is the same.
The convolution function on line 11 is called from line 29 to form the coefficients

of the product lk−1rk+1 for 1 ≤ k ≤ N . The cost is fewer than N
(∑M

m=0 2m + 1
)

=
NM2 + 2NM + N operations.

In this last bound, we have taken the operation count of a single convolution to
be M2 +2M +1. However, the convolutions that correspond to l1r3 and lN−1rN+1
are really multiplications by binomials, each with a count of 2M +1. Thus we may
subtract 2M2 from the grand total.

Assuming the weights wk,m are computed for 0 ≤ m ≤ M and 1 ≤ k ≤ N , the
rescaling on line 30 costs 2NM floating point operations. �

FINITE DIFFERENCE WEIGHTS 2411

Lemma 2. Fornberg’s method for computing wk,m, 0 ≤ m ≤ M , 1 ≤ k ≤ N , uses
(

5M + 5
2

)

N2 +
(

7M + 3
2

)

N − 5M3/6 − 3M2 − 13M/6 − 4

arithmetic operations.

Proof. The calculation here is with reference to the pseudo-code on page 700 of
[5]. The arithmetic operations with c3 and c2 on the left-hand side add up to
N(N + 1). The number of arithmetic operations that correspond to δmn−1,ν with
m > 0 is

∑N
n=1 5 min(n,M)n and the count with m = 0 is 3N(N + 1)/2. The

number of arithmetic operations that correspond to δmn,n is 6(NM −M2/2 +M/2)
assuming m > 0 and is 4N for m = 0. The lemma gives the grand total with N
replaced by N − 1 since the pseudo-code in [5] is given for N + 1 grid points. �

Lemma 3. The method of partial products uses fewer arithmetic operations than
Fornberg’s method except when N = 2 and M = 1.

Proof. If N ≥ 6, a tedious but elementary calculation, which we omit, shows that
the method of partial products uses fewer arithmetic operations. The other cases
can be checked manually. �

In the limit of large N , the method of partial products uses fewer arithmetic
operations by a factor of 4/(5M + 5). In Section 7, we shall see that the method
of partial products runs faster than Fornberg’s method by a similar factor.

If the method of partial products is required to return the finite difference weights
for all derivatives of order m, with 0 ≤ m ≤ M , it uses slightly more space than
Fornberg’s method. While Fornberg’s method uses space equal to N(M + 1) num-
bers, the method of partial products requires storage for about 2M additional
doubles to store the rk and the Lagrange weights. In Section 7, we report timing
data from two optimized implementations of the method of partial products. The
optimized C++ implementation, which returns the finite difference weights only for
derivatives of order M , uses less space than Fornberg’s method. The other imple-
mentation returns finite difference weights for all orders up to M . It uses O(NM)
scratch space and not the best possible scratch space of 2M numbers. Scratch
space is nearly always cached and any attempt to reduce it will bring no benefit.
The operation count for either implementation of the method of partial products
is almost certainly less than the upper bound given in Lemma 1.

4. Spectral differentiation matrices

The method of partial products, which is presented as Algorithm 1, computes
the finite difference weights for the M -th derivative at z = 0 in two stages. The
first stage is the computation of Lagrange weights wk which correspond to the grid
points z1, . . . , zN . The second stage is the computation of the partial products lk(z)
and rk(z) as well as the finite difference weights wk,M . The operation count given
in Lemma 1 can be divided into 2N2 for the first stage and NM2 + 8NM for the
second state.

If finite difference weights are desired at the point z = ζ, the same algorithm can
be used but the grid points must be shifted to z1 − ζ, . . . , zN − ζ. The Lagrange
weights do not change and do not need to be recomputed. However, the partial
products change and the second stage of the method must be executed with the

2412 BURHAN SADIQ AND DIVAKAR VISWANATH

shifted grid points. If finite difference weights are computed at p points, the total
cost is 2N2 + NM2p + 8NMp operations with some low order terms omitted.

The finite difference weights can be computed at each of the grid points z1, . . . , zN
and arranged in an N × N spectral differentiation matrix. The cost of com-
puting a spectral differentiation matrix using the method of partial products is
N2 (2 + 8NM + NM2). Welfert [14] has derived an algorithm whose total cost,
according to Weideman and Reddy [13], is N2(4 + 7NM).

Welfert’s method has a lower cost than the method of partial products. However,
it has a numerical instability that grows exponentially with M (see Section 6). If
that type of numerical instability is deemed to be acceptable, which we do not, a
direct use of (1.4) leads to a method which has an even lower operation count of
2N2 + 6N2M and which is particularly easy to implement. Welfert [14] pointed
out that the errors become “very important” for M > 6. In Section 6, we find that
Welfert’s method may have slightly higher errors for M = 2 and that its errors
increase somewhat erratically with N for M = 4. The errors are quite bad for
M = 8 and M = 16. The method of partial products appears numerically stable
for computing finite difference weights for all M (it must be noted however that
ill-conditioning is intrinsic to the computation of high derivatives).

5. Superconvergence or boosted order of accuracy

Let z1, . . . , zN be distinct grid points. Let

(5.1) f (m) (0) ≈ w1,mf (hz1) + · · · + wN,mf (hzN)
hm

be an approximation to the m-th derivative at 0. We begin by looking at the
order of accuracy of this approximation. Here (1.2) is shown again as (5.1) for
convenience. The order of the derivative m is assumed to satisfy m ≤ N − 1. The
case m = 0 corresponds to interpolation. The allowed values of m are from the set
{1, 2, . . . , N − 1}.

Lemma 4. The finite difference formula (5.1) has an error of O
(
hN−m

)
if and

only if
N∑

k=1

wk,mxm
k = m! and

N∑

k=1

wk,mxn
k = 0

for n ∈ {0, 1, . . . , N − 1} − {m}. The function f is assumed to be N times contin-
uously differentiable.

Proof. Assume that the weights wk,m satisfy the conditions given in the lemma.
The function f(z) can be expanded using Taylor series as f(0) + f ′(0)z + · · · +
f (N−1)(0)zN−1/(N−1)!+zNg(z), where g(z) is a continuous function. In particular,
g(z) is continuous at z = 0. If the Taylor expansion is substituted into the right-
hand side of (5.1) and the conditions satisfied by the weights are used, we get the
following expression:

f (m)(0) + hN−m
(
w1,mzN1 g (hz1) + · · · + wN,mzNN g (hzN)

)
.

The coefficient of hN−m is bounded in the limit h → 0, and therefore the error is
O
(
hN−m

)
.

The necessity of the conditions on the weights wk,m is deduced by applying the
finite difference formula (5.1) to f = 1, z, . . . , zN−1. �

FINITE DIFFERENCE WEIGHTS 2413

The conditions on the weights in Lemma 5 correspond to the matrix system

(5.2)

⎛

⎜
⎜
⎝

1 1 · · · 1
z1 z2 · · · zN

· · ·
zN−1
1 zN−1

2 · · · zN−1
N

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

w1,m
w2,m

...
wN,m

⎞

⎟
⎟
⎟
⎠

= m!em,

where em is the unit vector with its m-th entry equal to 1. The matrix here is the
transpose of the well-known Gram or Vandermonde matrix.

Newton and Lagrange interpolations are techniques for solving Vandermonde
systems. Newton interpolation is equivalent to an LU decomposition of the Gram
or Vandermonde matrix [4]. Partly because the matrix in (5.2) is the transpose
of the Gram or Vandermonde matrix, the interpolation techniques are not directly
applicable.

The Gram or Vandermonde determinant equals
∏

1≤i<j≤N (zj − zi) and is there-
fore nonsingular [4]. Thus we have the following theorem.

Theorem 1. There exists a unique choice of weights wk,m, k = 1, . . . , N , such that
the finite difference formula (5.1) has error O

(
hN−m

)
.

This theorem is trivial and generally known. However, its clear formulation is
essential for developments that will follow. Our main interest is in boosted order
of accuracy.

Lemma 5. The finite difference formula (1.2) has boosted order of accuracy with
an error of O

(
hN−m+b

)
, where b is a positive integer, if and only if the weights

wk,m satisfy
w1,mzN−1+β

1 + · · · + wN,mzN−1+β
N = 0

for β = 1, . . . , b in addition to the conditions of Lemma 4.

Proof. Similar to the proof of Lemma 4. �

To derive conditions for boosted order of accuracy that do not involve the
weights, we introduce the following notation. By
(5.3) det (z1, z2 . . . zN ;n1, n2, . . . , nN)
we denote the determinant of the N ×N matrix whose (i, j)-th entry is zni

j . The
transpose of the Vandermonde or Gram determinant of the grid points, which occurs
in (5.2), is det(z1, . . . , zN ; 0, . . .N − 1) in this notation.

Theorem 2. Let wk,m, k = 1, . . . , N , be the unique solution of (5.2) so that the
finite difference formula (5.1) has an order of accuracy that is at least N −m. The
order of accuracy is boosted by b, where b is a positive integer, if and only if

det (z1, . . . , zN ; [0, 1, . . . , N − 1, N − 1 + β] −m) = 0
for β = 1, . . . , b. Here [0, 1, . . . , N − 1, N − 1 + β] − m denotes the sequence
0, 1, . . . , N − 1, N − 1 + β with m deleted.

Proof. First, assume the weights wk,m and the grid points zk to be real. The
condition of Lemma 5 requires that the row vector Wm = [w1,m, . . . , wN,m] be
orthogonal to

(5.4)
[
zN−1+β
1 , . . . , zN−1+β

N

]
.

2414 BURHAN SADIQ AND DIVAKAR VISWANATH

By (5.2), Wm is orthogonal to every row of the Gram matrix except the m-th
row. Since the Gram matrix is nonsingular, the rows of that matrix are a linearly
independent basis. Consequently, the N−1-dimensional space of vectors orthogonal
to Wm is spanned by the rows of the Gram matrix with the m-th row excepted.
The vector (5.4) is orthogonal to Wm if and only if it lies in the span of the vectors

(5.5) [zn1 , . . . , znN] n ∈ {0, 1 . . .N − 1} − {m} .
Thus the condition of Lemma 5 holds if and only if the determinant of the N ×N
matrix whose first (N − 1) rows are the vectors (5.5) and whose last row is (5.4)
vanishes as stated in the theorem.

If the weights and the grid points are complex, the same argument can be re-
peated after replacing the weights by their complex conjugates in the definition of
Wm. �

Theorem 2 gives determinantal conditions for boosted order of accuracy. We will
cast those conditions into a more tractable algebraic form. The following theorem
gives the template for the algebraic form into which the conditions of Theorem 2
will be cast.

Theorem 3. If n1, n2, . . . , nN are distinct positive integers, the determinant (5.3)
can be factorized as

∏

1≤i<j≤N

(zj − zi) S (z1, . . . zN) ,

where S(z1, . . . zN) is a symmetric polynomial that is unchanged when z1, . . . , zN
are permuted. All the coefficients of S are integers.

Proof. We will work over Q, the field of rational numbers. We can think of the de-
terminant (5.3) as a polynomial in zN with coefficients in the field Q (z1, . . . , zN−1).
Since the determinant (5.3) vanishes, if zN is equal to any one of z1, . . . , zN−1, we
have that the determinant can be factorized as

(zN − z1) (zN − z2) . . . (zN − zN−1) f,

where f is an element of the field Q (z1, . . . , zN−1). By Gauss’s lemma, f should in
fact be an element of Z [z1, . . . , zN−1], the ring of polynomials in z1, . . . , zN−1 with
integer coefficients (for Gauss’s lemma, see Section 2.16 of [10] and in particular
the corollary at the end of that section). Now f can be considered as a polynomial
in zN−1 and factorized similarly, and so on, until we get a factorization of the form
shown in the theorem.

To prove that S is symmetric, consider a transposition that switches zp and zq.
The determinant (5.3) changes sign by a familiar property of determinants. The
product of all pairwise differences zj −zi also changes sign as may be easily verified
or as may be deduced by noting that the product is the Gram or Vandermonde
determinant. Therefore S is unchanged by transpositions and is a symmetric func-
tion. �

Remark 1. For the determinants that arise as conditions for boosted order of ac-
curacy in Theorem 2, we describe a method to compute the symmetric polynomial
S explicitly. The symmetric polynomials that arise in Theorem 3 are the Schur
functions of symmetric function theory. The connection to symmetric functions is
possibly of use for generalizations to higher dimensions.

FINITE DIFFERENCE WEIGHTS 2415

To begin with, let us consider the Gram determinant

(5.6) det (z1, . . . , zN , zN+1; 0, . . . , N − 1, N) .

This determinant is equal to

(5.7)
∏

1≤i<j≤N

(zj − zi) ×
N∏

k=1

(zN+1 − zk) .

See [4, p. 25]. By expanding (5.6) using the entries of the last column (each of
these entries is a power of zN+1), we deduce that the coefficient of zmN+1 in the
expansion of (5.6) is equal to

(5.8) (−1)N+m det(z1, . . . , zN ; [0, . . .N − 1, N] −m).

This determinant is the minor that corresponds to the entry zmN+1 in the expan-
sion of (5.6). By inspecting (5.7), we deduce that the coefficient of zmN+1 in that
expression is equal to

(5.9)
∏

1≤i<j≤N

(zj − zi) × (−1)N−mSN−m,

where
Sp =

∑

1≤i1<···<ip≤N

zi1 . . . zip .

Thus Sp denotes the sum of all possible terms obtained by multiplying p of the grid
points z1, . . . , zN . For future use, we introduce the notation S+

p for the sum of all
possible terms obtained by multiplying p of the numbers z1, . . . , zN , zN+1.

Theorem 4. The finite difference formula (5.1) with distinct grid points zk and
weights wk,m that satisfy (5.2) has an order of accuracy that is boosted by 1 if and
only if SN−m = 0.

Proof. The condition for a boost of 1 is obtained by setting β = 1 in Theorem 2.
By equating (5.8) with (5.9), we get

(5.10) det(z1, . . . , zN ; [0, . . .N − 1, N] −m) =
∏

1≤i<j≤N

(zj − zi) × SN−m.

Since the grid points are distinct, the determinant is zero if and only if SN−m =
0. �

The corollary that follows covers all of the popular cases that have boosted order
of accuracy.

Corollary 1. If the grid points z1, . . . , zN are symmetric about 0 (in other words
z is a grid point if and only if −z is a grid point) and N −m is odd, the order of
accuracy is boosted by 1.

Although we have restricted m to be in the set {1, 2, . . . , N − 1}, Theorems 2
and 4 hold for the case m = 0 as well. The case m = 0 of (5.1) corresponds
to interpolation. According to Theorem 4, the interpolation has boosted order of
accuracy if and only if SN = 0 or one of the grid points is zero. Of course, the
interpolant at zero is exact if zero is one of the grid points. We do not consider the
case m = 0 any further.

2416 BURHAN SADIQ AND DIVAKAR VISWANATH

To derive an algebraic condition for the order of accuracy to be boosted by 2, we
apply the identity (5.10) with grid points z1, . . . , zN , zN+1 and rewrite it as follows:

det(z1, . . . , zN , zN+1; [0, . . . , N − 1, N,N + 1] −m)

=
∏

1≤i<j≤N

(zj − zi) × S+
N−m+1 ×

N∏

k=1

(zN+1 − zk).

We equate the coefficients of zNN+1 to deduce that
(5.11)
det(z1, . . . , zN ; [0, . . .N−1, N+1]−m) =

∏

1≤i<j≤N

(zj − zi)×(S1SN−m − SN−m+1) .

To obtain this identity, we assumed m ≥ 1 and used S+
N−m+1 = SN−m+1 +

zN+1SN−m.

Lemma 6. The order of accuracy of the finite difference formula (5.1) is boosted
by 2 if and only if SN−m = 0 and SN−m+1 = 0.

Proof. We already have the condition SN−m = 0 for the order of accuracy to be
boosted by 1. By Theorem 2, the order of accuracy is boosted by 2 if and only if the
determinant of (5.11) is zero as well. Since SN−m = 0, by (5.11), it is equivalent
to SN−m+1 = 0. �

Theorem 5. The order of accuracy of the finite difference formula (5.1) for the
m-th derivative can never be boosted by more than 1 as long as the grid points are
real. Here m ≥ 1.

Proof. By the preceding lemma, the grid points z1, . . . , zN must satisfy SN−m = 0
and SN−m+1 = 0 for the order of accuracy to be boosted by more than 1. We
show that cannot happen by closely following the proof of Newton’s inequality (see
Theorem 144 on page 104 of [8]) .

Let f(z) denote (z − z1) . . . (z − zN), which is a polynomial of degree N with
N distinct real roots. Define g(x, y) = yNf(x/y) so that g(x, y) is a homogenous
polynomial in x and y of degree N . Differentiate g(x, y) (m−1) times with respect
to x and N −m− 1 with respect to y to get the polynomial

N ! × SN−m−1

2
(

N
m+1

) x2 + SN−m
(
N
m

) xy + SN−m+1

2
(

N
m−1

) y2.

Repeated application of Rolle’s theorem shows that this quadratic polynomial must
have distinct roots (see [8]). Therefore SN−m = 0 and SN−m+1 = 0 cannot hold
simultaneously. �

If the grid points are complex, it may be possible to boost the order of accuracy
by more than 1. One may obtain formulas for the sequence of determinants with
β = 1, . . . , b in Theorem 2. We have already covered the case with β = 1 in (5.10)
and the case with β = 2 in (5.11). To illustrate the general procedure, we show
how to get a formula for the determinant of Theorem 2 with β = 3. We write down

FINITE DIFFERENCE WEIGHTS 2417

the identity (5.11) using the grid points z1, . . . , zN , zN+1 and replace N by N + 1.

det(z1, . . . , zN , zN+1; [0, . . .N − 1, N,N + 2] −m)

=
∏

1≤i<j≤N

(zj − zi) ×
(
S+

1 S+
N−m+1 − S+

N−m+2
)
×

N∏

k=1

(zN+1 − zk).

We use S+
1 = S1 + zN+1, S+

N−m+1 = SN−m+1 + zN+1SN−m, and S+
N−m+2 =

SN−m+2 + zN+1SN−m+1, and equate coefficients of zNN+1 to get

det(z1, . . . , zN ; [0, . . .N − 1, N + 2] −m)

=
∏

1≤i<j≤N

(zj − zi) ×
(
SN−m+2 − SN−m+1S1 + SN−mS2

1 − SN−mS2
)
.

This is the determinant with β = 3 in Theorem 2. It gets cumbersome to go on like
this. However, we notice that the condition for the determinants with β = 1, 2, 3
to be zero is SN−m = SN−m+1 = SN−m+2 = 0. Here a simple pattern is evident.

To prove this pattern, we assume that the determinant of Theorem 2 with β = r
is of the form given by Theorem 3 with

S = SN−m+r−1 + more terms,

where each term other than the first has a factor that is one of SN−m, ..., SN−m+r−2.
We pass to the case β = r + 1 using the grid points z1, . . . , zN , zN+1 as illustrated
above. Then it is easy to see that the form of S for β = r + 1 is

S = SN−m+r + more terms,

where each term other than the first has a factor that is one of SN−m, ..., SN−m+r−1.
If the determinants with β = 1, . . . , r in Theorem 2 are zero, the additional condi-
tion that must be satisfied by the grid points for the determinant with β = r + 1
to be zero is SN−m+r = 0.

Theorem 6. The order of accuracy of the finite difference formula (5.1) for the m-
th derivative is boosted by b if and only if SN−m = SN−m+1 = · · · = SN−m+b−1 = 0.
Even with complex grid points, the order of accuracy can never be boosted by more
than m.

Proof. The first part of the theorem was proved by the calculations that preceded
its statement. To prove the second part, suppose that the order of accuracy is
boosted by m + 1. Then we must have SN = 0 which means at least one of the
grid points is zero. Since no other grid point can be zero, we must have SN−1 �= 0,
which is a contradiction. �

Remark 2. Algorithm 2 uses the results of this section to determine the order of
accuracy and the leading error term in the case of real grid points. We suspect
that the error is exactly equal to C f(r+m)(ζ)

(r+m)! hr for some point ζ in an interval that
includes 0 and all of the grid points.

2418 BURHAN SADIQ AND DIVAKAR VISWANATH

Algorithm 2 Order of Accuracy and Error Constant
Input: Grid points z1, . . . , zN all of which are real.
Input: Order of derivative m with 1 ≤ m ≤ N − 1.
Input: Weights w1,m, w2,m, . . . , wN,m in the finite difference formula for f (m)(0).
Comment: wk,m are computed using Algorithm 2.
Input: Tolerance τ
SN−m =

∑
1≤i1<···<iN−m≤N zi1 . . . ziN−m

.
TN−m =

∑
1≤i1<···<iN−m≤N

∣
∣zi1 . . . ziN−m

∣
∣.

if
∣
∣SN−m

∣
∣ < τTN−m then

r = N −m + 1.
else

r = N −m.
end if
C =

∑k=N
k=1 wk,mzr+m

k .
Leading error term of (1.2): C f(r+m)(0)

(r+m)! hr.

Remark 3. Our approach to the proof of Theorem 6 used explicit manipulation
of determinants. There is another approach based on the remainder formula for
polynomial interpolation. Let p(z) be the unique polynomial interpolant to f(z) at
the grid points z1, z2, . . . , zN . Then

f(z) − p(z) = f [z1, . . . , zN , z](z − z1) . . . (z − zN),
where f [. . .] is a divided difference; for this formula, see [4]. The error in the finite
difference approximation to f (m)(z) is given by

dm

dzm
f [z1, . . . , zN , z](z − z1) . . . (z − zN).

By using the product rule, we may expand the error as

f [z1, . . . , zN , z] d
m

dzm
(z − z1) . . . (z − zN)

+
(
m

1

)
d

dz
f [z1, . . . , zN , z] d

m−1

dzm−1 (z − z1) . . . (z − zN) + · · · .

It is readily seen that SN−m = 0 corresponds to the vanishing of the first term
at z = 0, SN−m+1 = 0 to that of the second term, and so on. Basic facts about
divided differences and their derivatives may be used to complete the proof.

Remark 4. Theorem 6 asserts that the maximum boost in the order of accuracy is
m even if complex grid points are allowed. This maximum boost is realized when
zk = z1 exp(2π(k−1)i/N) for 1 ≤ k ≤ N , z1 being a nonzero complex number. We
thank Jeffrey Rauch for this remark.

6. Illustration of numerical stability

For simple choices of grid points, such as zk = 0,±1,±2,±3,±4, all algorithms
find the finite difference weights with errors that are very close to machine precision.
To compare the different methods, we must turn to more complicated examples.

The Chebyshev points are defined by
zk = cos ((k − 1)π/(N − 1)) = sin (π(N − 2k + 1)/(N − 1))

FINITE DIFFERENCE WEIGHTS 2419

Figure 6.1. Errors in the entries of the 32×32 Chebyshev differ-
entiation matrix of order M = 8 for three different methods. The
vertical axis labeled d shows the number of digits of precision lost
due to rounding errors.

for k = 1, . . . , N . We will look at the relative errors in the spectral differentiation
matrix of order M for M = 2, 4, 8, 16 and N = 32, 64, 128, 256, 512.

The Chebyshev points are distributed over the interval [−1, 1]. The logarithmic
capacity of an interval is one quarter of its length, which in this case is 1/2. There-
fore the Lagrange weights wk will be approximately of the order 1/2N . To prevent
the possibility of underflow for large N , the Chebyshev points are scaled to 2zk
and the resulting finite difference weights for the M -th derivative are multiplied by
2−M .

For reasons described in Section 2, the Chebyshev points are reordered. The
reordering we use is bit reversal. With N being a power of 2 in our examples,
the binary representation of k (here k is assumed to run from 0 to N − 1) can be
reversed to map it to a new position. The permutation induced by bit reversal is
its own inverse, which simplifies implementation. The reordering of the grid points
has the additional effect of making underflows less likely [11]. For a discussion of
various orderings of Chebyshev points, see [2]. For convenience, the figures and
plots are given with the usual ordering of Chebyshev points.

Before turning to Figure 6.1 , which compares the numerical errors in different
methods, we make an important point. Even though the number of digits of pre-
cision lost in the 32 × 32 differentiation matrix of order M = 8 may be just 3, the
errors in an eighth derivative evaluated using that matrix will be much higher. Some
entries of the N × N Chebyshev differentiation matrix of order M are O

(
N2M)

.
Very large entries occur in the differentiation matrix and in exact arithmetic an ac-
curate derivative will be produced after delicate cancellations during matrix-vector
multiplication. In finite precision arithmetic, the largeness of the entries implies
that even small rounding errors in the entries of machine epsilon are sufficient to
cause explosive errors in numerically computed derivatives.

2420 BURHAN SADIQ AND DIVAKAR VISWANATH

Figure 6.2. Variation of the maximum relative error over the N2

entries of the N × N Chebyshev differentiation matrix. The or-
der of differentiation is M . While the method of partial products
is as accurate as Fornberg’s method in spite of using many fewer
operations, Welfert’s method has an instability which grows expo-
nentially with M . For M = 16, the errors for Welfert’s method are
about 106 and therefore omitted from the plot.

From Figure 6.1, we see that Welfert’s method loses 7 digits for N = 32 and
M = 8, while the other two methods lose only 3 digits. Fornberg’s method and
the method of partial products have very similar accuracy. There is a kind of flip
symmetry in the errors shown in each of the plots of that figure.

Figure 6.2 gives a more extensive report of errors. All the errors were estimated
using 50 digit arithmetic in MAPLE. The errors were then validated using 60 digit
arithmetic. From the figure, we see that the algorithm based on partial products is
as accurate as Fornberg’s method in spite of using many fewer arithmetic operations.
From the four plots of Figure 6.2, a surprise is that the errors are smaller for M = 16
than for M = 4 or M = 8. Why is that the case? We are not certain of the answer.

FINITE DIFFERENCE WEIGHTS 2421

We used the Matlab implementation of Welfert’s method which is a part of the
Matlab differentiation suite [13]. From Figure 6.2 and its caption, it is evident that
instability of Welfert’s method grows exponentially with the order of the derivative.

The main finding of this section is that Algorithm 1, which is based on partial
products, is as accurate as Fornberg’s method even though it uses fewer arithmetic
operations.

7. Timed trials

Lemma 1 of Section 3 shows that the method of partial products has a lower
operation count than Fornberg’s method by a factor of (5M +5)/4, where M is the
order of the derivative, if the number of grid points N is large. In this section, we
compare the two algorithms using timed trials.

Timing scientific programs requires knowledge of computer architecture and an
ability to read assembly instructions. On modern platforms, the number of cycles
used by a segment of a program depends very greatly on the environment in which
the program is run. A typical instruction to fetch a word from memory may take
300 cycles if there are cache misses, if the words are typically in far memory (in
cc-NUMA architectures), and dependencies in the instruction sequence eliminate
instruction level parallelism. On the other hand, a typical memory fetch instruction
may take only 4 cycles if the typical word is in L1 cache and instruction level
parallelism may cut that effective latency further by a factor of 10.

When the program is written in a sophisticated language such as C++, the com-
pilers introduce considerable uncertainty in the execution time. Simple changes can
change the generated machine code drastically, and for reasons most programmers
will not suspect, compilers may generate sub-optimal code. Without reading the
assembly code, it is impossible to be certain just what the program is doing. In
this section, we briefly sketch how to write a program carefully so as to bring out
the efficiencies inherent in the algorithm as well as some of the issues that arise in
timing programs.

Table 1 shows that the method of partial products is faster than Fornberg’s
method, as predicted by the operation counts given in Section 3, except when
N = 4. Each of the in-cache numbers in the table was obtained by taking the
average of either 106 or 105 successive computations of finite difference weights.
The number reported in the table is the median of five such averages. The out-
of-cache numbers were obtained by arranging either 106 or 105 instances of grid
points in memory and serially applying the algorithms to each instance and storing
the computed weights in a serial fashion in memory. The total cache is less than
13 MB. This method of getting out-of-cache numbers ensures that data is out of
cache while letting optimizations, such as prefetching to cache, implemented by the
memory controllers take effect as they would in a normal program. The hardware
Time Stamp Counter was accessed using the RDTSC instruction to count cycles.
This is the most accurate method for counting cycles on modern processors.

2422 BURHAN SADIQ AND DIVAKAR VISWANATH

T
a
b
l
e

1
.

N
um

be
ro

fc
yc

le
s(

on
a

sin
gl

e
co

re
of

a
2.

66
G

H
Z

X
eo

n
56

50
m

ac
hi

ne
)f

or
co

m
pu

tin
g

fin
ite

di
ffe

re
nc

e
w

ei
gh

ts
:

th
e

m
et

ho
d

of
pa

rt
ia

lp
ro

du
ct

s
fo

r
co

m
pu

tin
g

th
e

w
ei

gh
ts

fo
r

th
e
M

-t
h

de
riv

at
iv

e
on

ly
(P

P)
,t

he
m

et
ho

d
of

pa
rt

ia
l

pr
od

uc
ts

fo
r

co
m

pu
tin

g
th

e
w

ei
gh

ts
fo

r
al

ld
er

iv
at

iv
e

up
to

M
(P

P+
+

),
an

d
Fo

rn
be

rg
’s

m
et

ho
d

(F
).

T
he

m
an

ne
r

in
w

hi
ch

in
-c

ac
he

an
d

ou
t-

of
-c

ac
he

nu
m

be
rs

w
er

e
ob

ta
in

ed
,a

s
w

el
la

s
th

e
w

ay
M

AT
LA

B
w

as
tim

ed
,i

s
de

sc
rib

ed
in

th
e

te
xt

.
In

ne
ar

ly
al

la
pp

lic
at

io
ns

,w
e

ha
ve

M
≤

4
as

in
th

is
ta

bl
e.

(in
ca

ch
e)

(o
ut

of
ca

ch
e)

(M
AT

LA
B

)
N

M
PP

PP
+

+
F

PP
PP

+
+

F
PP

+
+

P
X

+
+

F1
F2

4
1

36
8

45
0

49
7

40
5

51
3

36
7

1.
0e

+
6

3.
5e

+
5

2.
0e

+
5

3.
0e

+
5

4
2

37
5

55
0

64
2

41
2

64
0

47
1

1.
2e

+
6

3.
6e

+
5

2.
2e

+
5

3.
0e

+
5

16
1

1,
69

2
2,

07
3

6,
06

9
1,

84
3

2,
32

2
3,

46
8

3.
9e

+
6

7.
7e

+
5

2.
6e

+
6

9.
4e

+
5

16
2

1,
83

2
2,

47
8

9,
02

1
1,

98
3

2,
81

8
4,

54
5

4.
7e

+
6

8.
5e

+
5

2.
8e

+
6

9.
5e

+
5

16
4

2,
07

7
3,

28
3

14
,6

94
2,

27
2

3,
87

2
6,

62
9

6.
3e

+
6

8.
1e

+
5

2.
8e

+
6

9.
7e

+
5

64
1

12
,8

36
14

,4
82

91
,8

28
13

,8
44

15
,7

79
40

,4
92

1.
5e

+
7

4.
9e

+
6

3.
9e

+
6

3.
8e

+
6

64
2

13
,4

01
16

,1
18

13
7,

59
7

14
,2

59
17

,8
09

55
,4

84
1.

8e
+

7
4.

3e
+

6
4.

2e
+

7
3.

9e
+

6
64

4
14

,7
48

20
,2

83
22

8,
93

7
15

,6
95

22
,8

21
86

,7
83

2.
5e

+
7

4.
8e

+
6

4.
2e

+
7

4.
0e

+
6

25
6

1
16

9,
64

7
16

3,
58

7
1,

44
9,

62
5

16
3,

93
2

17
2,

31
5

57
7,

09
5

6.
1e

+
7

1.
5e

+
8

6.
2e

+
8

2.
1e

+
7

25
6

2
17

1,
88

2
18

3,
37

3
2,

17
3,

97
7

16
6,

31
0

18
0,

69
4

90
6,

80
1

7.
4e

+
7

1.
2e

+
8

6.
6e

+
8

2.
3e

+
7

25
6

4
17

7,
17

4
20

0,
12

0
3,

62
2,

95
2

17
2,

25
7

20
0,

78
6

1,
41

4,
88

4
1.

0e
+

8
1.

4e
+

8
6.

7e
+

8
2.

5e
+

7

FINITE DIFFERENCE WEIGHTS 2423

The MATLAB timing information given in Table 1 was obtained using four
scripts, two of them supplied by the referee and two of them written by us. It may
be observed that MATLAB is 100 to 500 times slower than C++.

The PP++ column of Table 1 is from a Matlab implementation which closely
follows Algorithm 1 . The PX++ column is from another Matlab script. This
column does not correspond to the method of partial products. It uses a single
for-loop to compute the products

∏
j �=i(z− zi) up to the zM term for i = 1, . . . , N .

The F1 column is from a Matlab script supplied by the referee that corresponds
directly to the Fortran program listed by Fornberg [5]. The F2 column is a highly
compact version of Fornberg’s method supplied by the referee. Table 1 shows that
that the compact implementation of Fornberg’s method beats the method of partial
products in MATLAB by a factor of five.

Returning to C++, there are a few oddities in Table 1. The method of partial
products is faster except when N = 4, and in some instances, the programs are
faster out of cache than in cache. To understand these oddities, we consider the
C++ programs that were used in more detail.

The C++ program used to generate the numbers in Table 1 was written with
considerable care. The method of partial products has a modular structure as
evidenced by the calls to the MULTBINOM and CONVOLVE functions in Algorithm 1.
These functions correspond to the inner-most loops and the modular structure of
the program as a whole allows us to write efficient code. The actual code exploits
efficiencies that the presentation in Algorithm 1 does not. The MULTBINOM and
CONVOLVE functions shown give the impression that all partial products are treated
as if they have terms up to zM . The code exploited the fact that lk for 1 ≤
k < M and rk for N − M < k ≤ N have fewer terms. The optimized C++
program has separate functions for computing Lagrange weights and finite difference
weights (this separation being a crucial feature of the method of partial products)
but the functions MULTBINOM and CONVOLVE are inlined. A desirable feature of
the method of partial products as displayed by Algorithm 1 is that there are no
conditional statements within loops. We went to considerable trouble to preserve
that feature even while allowing for the partial products to have fewer than M
terms. Conditional statements inside loops can cause missed branch predictions
and the overhead of missed branch predictions for the kind of algorithms that are
being timed here can be substantial.

Fornberg’s method does not appear to offer similar opportunities for writing
efficient code. We used a C++ program that closely follows the Fortran code
presented by Fornberg himself [7]. The C++ code we used for Fornberg’s method
used restrict pointers to enable compiler optimizations.

The numbers for the method of partial products given in Table 1 are not the
best possible when N is small. We now explain how to modify our code, which we
will post on the internet, to make it faster. The modifications are trivial and the
speed-up can be as much as a factor of 2.

2424 BURHAN SADIQ AND DIVAKAR VISWANATH

The C++ function for computing Lagrange weights is listed below.

1 void lagrangeWeights (double ∗ r e s t r i c t z ,
2 int N, double ∗ r e s t r i c t w){
3 for (int i =0; i < N; i++){
4 w[i] = 1 . 0 ;
5 for (int j =0; j < i ; j++)
6 w[i] ∗= z [i]−z [j] ;
7 for (int j=i +1; j < N; j++)
8 w[i] ∗= z [i]−z [j] ;
9 }

10 for (int i =0; i < N; i++)
11 w[i] = 1 .0/w[i] ;
12 }

The inner loops that begin on lines 5 and 7 can be combined into a single loop.
However, the combined loop will have a conditional inside to skip j==i and that
conditional can cause missed branch predictions in the inner-most loop, which is
undesirable. The division operations are collected together in the loop that begins
on line 10. This reduces the number of division operations and keeps the division
operations separate from the multiplications and subtractions. Mixing up division
operations with multiplications and subtractions is likely to lead to an instruction
stream without as much parallelism. The loops in the listing of lagrangeWeights()
are written to be easy for the compiler to unroll, which it does as we will see.

Although the lagrangeWeights() function has only 12 lines, the assembly gen-
erated by Intel’s icpc compiler (version 12) is several hundred lines. If we are to get
a sense of why the program performs as it does, we have no option but to look at
the assembly and understand why 12 lines of C++ turn into several hundred lines
of assembly. Below is a snippet of assembly code that corresponds to the division
loop (lines 9 and 10) of the C++ listing.

1
2 . .B2 . 6 9 :
3 movaps . L 2 i l 0 f l o a t p a c k e t . 1 0 (%r i p) , %xmm0
4 movaps . L 2 i l 0 f l o a t p a c k e t . 1 0 (%r i p) , %xmm1
5 movaps . L 2 i l 0 f l o a t p a c k e t . 1 0 (%r i p) , %xmm2
6 movaps . L 2 i l 0 f l o a t p a c k e t . 1 0 (%r i p) , %xmm3
7 divpd (%rdx ,%rdi , 8) , %xmm0
8 divpd 16(%rdx ,%rdi , 8) , %xmm1
9 divpd 32(%rdx ,%rdi , 8) , %xmm2

10 divpd 48(%rdx ,%rdi , 8) , %xmm3
11 movaps %xmm0, (%rdx ,%rdi , 8)
12 movaps %xmm1, 16(%rdx ,%rdi , 8)
13 movaps %xmm2, 32(%rdx ,%rdi , 8)
14 movaps %xmm3, 48(%rdx ,%rdi , 8)
15 addq 8 , %rd i
16 cmpq %r s i , %rd i
17 jb . .B2 . 6 9

FINITE DIFFERENCE WEIGHTS 2425

Lines 3 through 6 are moving 1 into four XMM registers %xmm0 through %xmm3.
Each XMM register is 128 bits and holds two double precision numbers. The DIVPD
instructions on lines 7 through 10 are evidence that the care we took in writing the
C++ program has resulted in good code. In DIVPD, the suffix PD stands for packed
double and indicates that a single instruction will carry out two divisions. The four
DIVPD instructions are independent of each other. They can and most likely will be
executed in parallel. The move instructions on lines 11 through 14 will move the
result of the divisions to the appropriate locations in memory.

Thus the inner loop of the assembly listing has eight divisions and not just one
as in the original program. A moment’s thought will show the complications the
compiler has to go through to generate such code. What if N were only 3 in
which case the total number of division operations in lagrangeWeights() is also
3? The compiler has to have an answer to that question and the answer is inside
complicated assembly code. The compiler has to generate special instructions to
check the value of N and skip the assembly snippet we displayed entirely using a
jump instruction if N is too small.

That is not the only hoop the compiler has to jump through to generate effi-
cient code. There are many others. One of them has to do with memory align-
ment. The DIVPD instruction requires that all the memory addresses that occur
on lines 7 through 14 must be 16 byte aligned. In general, the pointers that the
lagrangeWeights() function is called with are not 16 byte aligned. The com-
piler has to generate instructions to check pointer alignment and produce suitably
optimized code for each case that arises.

Since our function for computing Lagrange weights was coded carefully in C++,
the compiler was able to unroll loops and generate packed double instructions.
However, the compiler has to contend with the fact that N , the number of grid
points, can take a number of different values. It assumes N to be large enough
that loop unrolling results in faster code. If N is small, the unrolling introduces
significant overhead. Needless loop unrolling is the reason Fornberg’s method is
faster for N = 4 in Table 1. However, there is an easy way around. We can help
the compiler by giving the value of N explicitly as in the listing below.

1 void lagrangeWeights4 (double ∗ r e s t r i c t z ,
2 double ∗ r e s t r i c t w){
3 const int N=4;
4 for (int i =0; i < N; i++){
5 w[i] = 1 . 0 ;
6 for (int j =0; j < i ; j++)
7 w[i] ∗= z [i]−z [j] ;
8 for (int j=i +1; j < N; j++)
9 w[i] ∗= z [i]−z [j] ;

10 }
11 for (int i =0; i < N; i++)
12 w[i] = 1 .0/w[i] ;
13 }

The number of grid points N is no longer an argument to the function, but is given
as a constant equal to 4 on line 3. Since the compiler knows the value of N , it can

2426 BURHAN SADIQ AND DIVAKAR VISWANATH

unroll the loops completely and generate straight line code. However, the excellent
icpc compiler does not unroll the inner loops.

The function for computing finite difference weights can be optimized similarly
by giving the values of N and M explicitly as const ints.

The optimized program for N = 4 and M = 2 used 182 cycles, which is less
than half the cycles used if values of N and M are not given to the compiler as
constants (375 from Table 1). For N = 32 and M = 16, the improvement is from
7005 cycles to 4246 cycles—still very considerable and an illustration of the great
role played by programming skill. The operation count for the method of partial
products with N = 32 and M = 16 is 13314. This corresponds to an impressive
3.14 double precision floating point operations per cycle. The peak bandwidth is
4 operations per cycle since 2 additions or subtractions and 2 multiplications can
be completed in every cycle. The fully optimized version reaches nearly 80% of the
peak bandwidth. Scientific programs that are not expertly coded would be lucky
to reach 10% of the peak bandwidth. Going beyond 80% of peak bandwidth will
require hand coding in assembly with a keen awareness of instruction alignment,
instruction latencies, register ports, and the port numbers of various instructions.
At any rate, even the LINPACK benchmark does not typically get beyond 85% of
the peak bandwidth, although the top-most supercomputers appear to beat that
figure with very careful tuning.

Table 1 shows that the out-of-cache performance can be better than the in-cache
performance. The operation counts for the method of partial products and Forn-
berg’s method are O(N2 +NM2) and O(N2M), respectively, as shown in Lemmas
1 and 2. Both methods use O(NM) space. The number of memory locations ac-
cessed is fewer than the number of arithmetic operations with the disparity more
pronounced for larger N and M . Therefore neither algorithm is memory limited
and we may expect the programs to be as fast out of cache as they are in cache. The
out of cache numbers are better in some instances, and dramatically better in the
case of Fornberg’s method, because there are numerous memory optimizations that
take effect when memory is accessed in a regular pattern. When the same memory,
spanning no more than a few dozen cache lines, is reused, these optimizations in-
troduce overhead. Exactly what these optimizations are is proprietary information
not shared by Intel. Therefore a more complete explanation cannot be given.

Acknowledgments

The authors thank Sergey Fomin, Jeffrey Rauch, Nick Trefethen, and Oleg
Zikanov for useful discussions.

References

[1] Jean-Paul Berrut and Lloyd N. Trefethen, Barycentric Lagrange interpolation, SIAM Rev.
46 (2004), no. 3, 501–517 (electronic), DOI 10.1137/S0036144502417715. MR2115059
(2005k:65018)

[2] Daniela Calvetti and Lothar Reichel, On the evaluation of polynomial coefficients, Numer.
Algorithms 33 (2003), no. 1-4, 153–161, DOI 10.1023/A:1025555803588. International Con-
ference on Numerical Algorithms, Vol. I (Marrakesh, 2001). MR2005559 (2004j:65061)

[3] R.M. Corless and S.M. Watt, Bernstein bases are optimal, but, sometimes, Lagrange bases
are better, In Proceedings of SYNASC, Timisoara, pages 141–153. MIRTON Press, 2004.

[4] Philip J. Davis, Interpolation and approximation, Dover Publications Inc., New York, 1975.
Republication, with minor corrections, of the 1963 original, with a new preface and bibliog-
raphy. MR0380189 (52 #1089)

http://www.ams.org/mathscinet-getitem?mr=2115059
http://www.ams.org/mathscinet-getitem?mr=2115059
http://www.ams.org/mathscinet-getitem?mr=2005559
http://www.ams.org/mathscinet-getitem?mr=2005559
http://www.ams.org/mathscinet-getitem?mr=0380189
http://www.ams.org/mathscinet-getitem?mr=0380189

FINITE DIFFERENCE WEIGHTS 2427

[5] Bengt Fornberg, Generation of finite difference formulas on arbitrarily spaced grids, Math.
Comp. 51 (1988), no. 184, 699–706, DOI 10.2307/2008770. MR935077 (89b:65055)

[6] Bengt Fornberg, A practical guide to pseudospectral methods, Cambridge Monographs on
Applied and Computational Mathematics, vol. 1, Cambridge University Press, Cambridge,
1996. MR1386891 (97g:65001)

[7] Bengt Fornberg, Calculation of weights in finite difference formulas, SIAM Rev. 40 (1998),
no. 3, 685–691 (electronic), DOI 10.1137/S0036144596322507. MR1642772

[8] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Li-
brary, Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition. MR944909
(89d:26016)

[9] Nicholas J. Higham, Accuracy and stability of numerical algorithms, 2nd ed., Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. MR1927606
(2003g:65064)

[10] Nathan Jacobson, Basic algebra. I, 2nd ed., W. H. Freeman and Company, New York, 1985.
MR780184 (86d:00001)

[11] B. Sadiq and D. Viswanath, Barycentric Hermite interpolation, Arxiv preprint, 2011.
[12] D. Viswanath and L. N. Trefethen, Condition numbers of random triangular ma-

trices, SIAM J. Matrix Anal. Appl. 19 (1998), no. 2, 564–581 (electronic), DOI
10.1137/S0895479896312869. MR1614019 (99b:65061)

[13] J. A. C. Weideman and S. C. Reddy, A MATLAB differentiation matrix suite, ACM
Trans. Math. Software 26 (2000), no. 4, 465–519, DOI 10.1145/365723.365727. MR1939962
(2003g:65004)

[14] Bruno D. Welfert, Generation of pseudospectral differentiation matrices. I, SIAM J. Nu-
mer. Anal. 34 (1997), no. 4, 1640–1657, DOI 10.1137/S0036142993295545. MR1461800
(98e:65105)

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

E-mail address: bsadiq@umich.edu

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109

E-mail address: divakar@umich.edu

http://www.ams.org/mathscinet-getitem?mr=935077
http://www.ams.org/mathscinet-getitem?mr=935077
http://www.ams.org/mathscinet-getitem?mr=1386891
http://www.ams.org/mathscinet-getitem?mr=1386891
http://www.ams.org/mathscinet-getitem?mr=1642772
http://www.ams.org/mathscinet-getitem?mr=944909
http://www.ams.org/mathscinet-getitem?mr=944909
http://www.ams.org/mathscinet-getitem?mr=1927606
http://www.ams.org/mathscinet-getitem?mr=1927606
http://www.ams.org/mathscinet-getitem?mr=780184
http://www.ams.org/mathscinet-getitem?mr=780184
http://www.ams.org/mathscinet-getitem?mr=1614019
http://www.ams.org/mathscinet-getitem?mr=1614019
http://www.ams.org/mathscinet-getitem?mr=1939962
http://www.ams.org/mathscinet-getitem?mr=1939962
http://www.ams.org/mathscinet-getitem?mr=1461800
http://www.ams.org/mathscinet-getitem?mr=1461800

	1. Introduction
	2. From roots to coefficients
	3. Finite difference weights using partial products
	4. Spectral differentiation matrices
	5. Superconvergence or boosted order of accuracy
	6. Illustration of numerical stability
	7. Timed trials
	Acknowledgments
	References

