Strong order of convergence of a fully discrete approximation of a linear stochastic Volterra type evolution equation
HTML articles powered by AMS MathViewer
- by Mihály Kovács and Jacques Printems;
- Math. Comp. 83 (2014), 2325-2346
- DOI: https://doi.org/10.1090/S0025-5718-2014-02803-2
- Published electronically: January 27, 2014
- PDF | Request permission
Abstract:
In this paper we investigate a discrete approximation in time and in space of a Hilbert space valued stochastic process $\{u(t)\}_{t\in [0,T]}$ satisfying a stochastic linear evolution equation with a positive-type memory term driven by an additive Gaussian noise. The equation can be written in an abstract form as \[ \mathrm {d} u + \left ( \int _0^t b(t-s) Au(s) \mathrm {d} s \right ) \mathrm {d} t = \mathrm {d} W^{_Q},~t\in (0,T]; \quad u(0)=u_0 \in H, \] where $W^{_Q}$ is a $Q$-Wiener process on $H=L^2({\mathcal D})$ and where the main example of $b$ we consider is given by \[ b(t) = t^{\beta -1}/\Gamma (\beta ), \quad 0 < \beta <1. \] We let $A$ be an unbounded linear self-adjoint positive operator on $H$ and we further assume that there exist $\alpha >0$ such that $A^{-\alpha }$ has finite trace and that $Q$ is bounded from $H$ into $D(A^\kappa )$ for some real $\kappa$ with $\alpha -\frac {1}{\beta +1}<\kappa \leq \alpha$.
The discretization is achieved via an implicit Euler scheme and a Laplace transform convolution quadrature in time (parameter $\Delta t =T/n$), and a standard continuous finite element method in space (parameter $h$). Let $u_{n,h}$ be the discrete solution at $T=n\Delta t$. We show that \begin{equation*} \left ( \mathbb {E} \| u_{n,h} - u(T)\|^2 \right )^{1/2}={\mathcal O}(h^{\nu } + \Delta t^\gamma ), \end{equation*} for any $\gamma < (1 - (\beta +1)(\alpha - \kappa ))/2$ and $\nu \leq \frac {1}{\beta +1}-\alpha +\kappa$.
References
- M. P. Calvo, E. Cuesta, and C. Palencia, Runge-Kutta convolution quadrature methods for well-posed equations with memory, Numer. Math. 107 (2007), no. 4, 589–614. MR 2342644, DOI 10.1007/s00211-007-0107-9
- U Jin Choi and R. C. MacCamy, Fractional order Volterra equations, Volterra integrodifferential equations in Banach spaces and applications (Trento, 1987) Pitman Res. Notes Math. Ser., vol. 190, Longman Sci. Tech., Harlow, 1989, pp. 231–245. MR 1018883
- Ph. Clément, G. Da Prato, and J. Prüss, White noise perturbation of the equations of linear parabolic viscoelasticity, Rend. Istit. Mat. Univ. Trieste 29 (1997), no. 1-2, 207–220 (1998). MR 1658451
- Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. MR 1207136, DOI 10.1017/CBO9780511666223
- P. P. B. Eggermont, On the quadrature error in operational quadrature methods for convolutions, Numer. Math. 62 (1992), no. 1, 35–48. MR 1159044, DOI 10.1007/BF01396219
- Charles B. Harris and Richard D. Noren, Uniform $l^1$ behavior of a time discretization method for a Volterra integrodifferential equation with convex kernel; stability, SIAM J. Numer. Anal. 49 (2011), no. 4, 1553–1571. MR 2831061, DOI 10.1137/100804656
- A. Karczewska and P. Rozmej, On Numerical Solutions to stochastic Volterra equations, arXiv:math/0409026.
- Mihály Kovács, Stig Larsson, and Fredrik Lindgren, Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise, Numer. Algorithms 53 (2010), no. 2-3, 309–320. MR 2600932, DOI 10.1007/s11075-009-9281-4
- C. Lubich, Convolution quadrature and discretized operational calculus. I, Numer. Math. 52 (1988), no. 2, 129–145. MR 923707, DOI 10.1007/BF01398686
- C. Lubich, Convolution quadrature and discretized operational calculus. II, Numer. Math. 52 (1988), no. 4, 413–425. MR 932708, DOI 10.1007/BF01462237
- Christian Lubich, Convolution quadrature revisited, BIT 44 (2004), no. 3, 503–514. MR 2106013, DOI 10.1023/B:BITN.0000046813.23911.2d
- Ch. Lubich, I. H. Sloan, and V. Thomée, Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term, Math. Comp. 65 (1996), no. 213, 1–17. MR 1322891, DOI 10.1090/S0025-5718-96-00677-1
- W. McLean and V. Thomée, Numerical solution of an evolution equation with a positive-type memory term, J. Austral. Math. Soc. Ser. B 35 (1993), no. 1, 23–70. MR 1225703, DOI 10.1017/S0334270000007268
- Sylvie Monniaux and Jan Prüss, A theorem of the Dore-Venni type for noncommuting operators, Trans. Amer. Math. Soc. 349 (1997), no. 12, 4787–4814. MR 1433125, DOI 10.1090/S0002-9947-97-01997-1
- J. A. Nohel and D. F. Shea, Frequency domain methods for Volterra equations, Advances in Math. 22 (1976), no. 3, 278–304. MR 500024, DOI 10.1016/0001-8708(76)90096-7
- Jacques Printems, On the discretization in time of parabolic stochastic partial differential equations, M2AN Math. Model. Numer. Anal. 35 (2001), no. 6, 1055–1078. MR 1873517, DOI 10.1051/m2an:2001148
- Jan Prüss, Evolutionary integral equations and applications, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993. MR 1238939, DOI 10.1007/978-3-0348-8570-6
- Stefan Sperlich, On parabolic Volterra equations disturbed by fractional Brownian motions, Stoch. Anal. Appl. 27 (2009), no. 1, 74–94. MR 2473141, DOI 10.1080/07362990802564616
- Vidar Thomée, Galerkin finite element methods for parabolic problems, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR 2249024
- Xu Da, Stability of the difference type methods for linear Volterra equations in Hilbert spaces, Numer. Math. 109 (2008), no. 4, 571–595. MR 2407323, DOI 10.1007/s00211-008-0151-0
- Yubin Yan, Galerkin finite element methods for stochastic parabolic partial differential equations, SIAM J. Numer. Anal. 43 (2005), no. 4, 1363–1384. MR 2182132, DOI 10.1137/040605278
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, NJ, 1941. MR 5923
Bibliographic Information
- Mihály Kovács
- Affiliation: Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
- Email: mkovacs@maths.otago.ac.nz
- Jacques Printems
- Affiliation: Laboratoire d’Analyse et de Mathématiques Appliquées, CNRS UMR 8050, 61, avenue du Général de Gaulle, Université Paris–Est, 94010 Créteil, France
- Email: printems@u-pec.fr
- Received by editor(s): July 9, 2012
- Received by editor(s) in revised form: January 30, 2013
- Published electronically: January 27, 2014
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 83 (2014), 2325-2346
- MSC (2010): Primary 34A08, 45D05, 60H15, 60H35, 65M12, 65M60
- DOI: https://doi.org/10.1090/S0025-5718-2014-02803-2
- MathSciNet review: 3223334