## Strong order of convergence of a fully discrete approximation of a linear stochastic Volterra type evolution equation

HTML articles powered by AMS MathViewer

- by Mihály Kovács and Jacques Printems;
- Math. Comp.
**83**(2014), 2325-2346 - DOI: https://doi.org/10.1090/S0025-5718-2014-02803-2
- Published electronically: January 27, 2014
- PDF | Request permission

## Abstract:

In this paper we investigate a discrete approximation in time and in space of a Hilbert space valued stochastic process $\{u(t)\}_{t\in [0,T]}$ satisfying a stochastic linear evolution equation with a positive-type memory term driven by an additive Gaussian noise. The equation can be written in an abstract form as \[ \mathrm {d} u + \left ( \int _0^t b(t-s) Au(s) \mathrm {d} s \right ) \mathrm {d} t = \mathrm {d} W^{_Q},~t\in (0,T]; \quad u(0)=u_0 \in H, \] where $W^{_Q}$ is a $Q$-Wiener process on $H=L^2({\mathcal D})$ and where the main example of $b$ we consider is given by \[ b(t) = t^{\beta -1}/\Gamma (\beta ), \quad 0 < \beta <1. \] We let $A$ be an unbounded linear self-adjoint positive operator on $H$ and we further assume that there exist $\alpha >0$ such that $A^{-\alpha }$ has finite trace and that $Q$ is bounded from $H$ into $D(A^\kappa )$ for some real $\kappa$ with $\alpha -\frac {1}{\beta +1}<\kappa \leq \alpha$.

The discretization is achieved via an implicit Euler scheme and a Laplace transform convolution quadrature in time (parameter $\Delta t =T/n$), and a standard continuous finite element method in space (parameter $h$). Let $u_{n,h}$ be the discrete solution at $T=n\Delta t$. We show that \begin{equation*} \left ( \mathbb {E} \| u_{n,h} - u(T)\|^2 \right )^{1/2}={\mathcal O}(h^{\nu } + \Delta t^\gamma ), \end{equation*} for any $\gamma < (1 - (\beta +1)(\alpha - \kappa ))/2$ and $\nu \leq \frac {1}{\beta +1}-\alpha +\kappa$.

## References

- M. P. Calvo, E. Cuesta, and C. Palencia,
*Runge-Kutta convolution quadrature methods for well-posed equations with memory*, Numer. Math.**107**(2007), no. 4, 589–614. MR**2342644**, DOI 10.1007/s00211-007-0107-9 - U Jin Choi and R. C. MacCamy,
*Fractional order Volterra equations*, Volterra integrodifferential equations in Banach spaces and applications (Trento, 1987) Pitman Res. Notes Math. Ser., vol. 190, Longman Sci. Tech., Harlow, 1989, pp. 231–245. MR**1018883** - Ph. Clément, G. Da Prato, and J. Prüss,
*White noise perturbation of the equations of linear parabolic viscoelasticity*, Rend. Istit. Mat. Univ. Trieste**29**(1997), no. 1-2, 207–220 (1998). MR**1658451** - Giuseppe Da Prato and Jerzy Zabczyk,
*Stochastic equations in infinite dimensions*, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. MR**1207136**, DOI 10.1017/CBO9780511666223 - P. P. B. Eggermont,
*On the quadrature error in operational quadrature methods for convolutions*, Numer. Math.**62**(1992), no. 1, 35–48. MR**1159044**, DOI 10.1007/BF01396219 - Charles B. Harris and Richard D. Noren,
*Uniform $l^1$ behavior of a time discretization method for a Volterra integrodifferential equation with convex kernel; stability*, SIAM J. Numer. Anal.**49**(2011), no. 4, 1553–1571. MR**2831061**, DOI 10.1137/100804656 - A. Karczewska and P. Rozmej,
*On Numerical Solutions to stochastic Volterra equations*, arXiv:math/0409026. - Mihály Kovács, Stig Larsson, and Fredrik Lindgren,
*Strong convergence of the finite element method with truncated noise for semilinear parabolic stochastic equations with additive noise*, Numer. Algorithms**53**(2010), no. 2-3, 309–320. MR**2600932**, DOI 10.1007/s11075-009-9281-4 - C. Lubich,
*Convolution quadrature and discretized operational calculus. I*, Numer. Math.**52**(1988), no. 2, 129–145. MR**923707**, DOI 10.1007/BF01398686 - C. Lubich,
*Convolution quadrature and discretized operational calculus. II*, Numer. Math.**52**(1988), no. 4, 413–425. MR**932708**, DOI 10.1007/BF01462237 - Christian Lubich,
*Convolution quadrature revisited*, BIT**44**(2004), no. 3, 503–514. MR**2106013**, DOI 10.1023/B:BITN.0000046813.23911.2d - Ch. Lubich, I. H. Sloan, and V. Thomée,
*Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term*, Math. Comp.**65**(1996), no. 213, 1–17. MR**1322891**, DOI 10.1090/S0025-5718-96-00677-1 - W. McLean and V. Thomée,
*Numerical solution of an evolution equation with a positive-type memory term*, J. Austral. Math. Soc. Ser. B**35**(1993), no. 1, 23–70. MR**1225703**, DOI 10.1017/S0334270000007268 - Sylvie Monniaux and Jan Prüss,
*A theorem of the Dore-Venni type for noncommuting operators*, Trans. Amer. Math. Soc.**349**(1997), no. 12, 4787–4814. MR**1433125**, DOI 10.1090/S0002-9947-97-01997-1 - J. A. Nohel and D. F. Shea,
*Frequency domain methods for Volterra equations*, Advances in Math.**22**(1976), no. 3, 278–304. MR**500024**, DOI 10.1016/0001-8708(76)90096-7 - Jacques Printems,
*On the discretization in time of parabolic stochastic partial differential equations*, M2AN Math. Model. Numer. Anal.**35**(2001), no. 6, 1055–1078. MR**1873517**, DOI 10.1051/m2an:2001148 - Jan Prüss,
*Evolutionary integral equations and applications*, Monographs in Mathematics, vol. 87, Birkhäuser Verlag, Basel, 1993. MR**1238939**, DOI 10.1007/978-3-0348-8570-6 - Stefan Sperlich,
*On parabolic Volterra equations disturbed by fractional Brownian motions*, Stoch. Anal. Appl.**27**(2009), no. 1, 74–94. MR**2473141**, DOI 10.1080/07362990802564616 - Vidar Thomée,
*Galerkin finite element methods for parabolic problems*, 2nd ed., Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 2006. MR**2249024** - Xu Da,
*Stability of the difference type methods for linear Volterra equations in Hilbert spaces*, Numer. Math.**109**(2008), no. 4, 571–595. MR**2407323**, DOI 10.1007/s00211-008-0151-0 - Yubin Yan,
*Galerkin finite element methods for stochastic parabolic partial differential equations*, SIAM J. Numer. Anal.**43**(2005), no. 4, 1363–1384. MR**2182132**, DOI 10.1137/040605278 - David Vernon Widder,
*The Laplace Transform*, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, NJ, 1941. MR**5923**

## Bibliographic Information

**Mihály Kovács**- Affiliation: Department of Mathematics and Statistics, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
- Email: mkovacs@maths.otago.ac.nz
**Jacques Printems**- Affiliation: Laboratoire d’Analyse et de Mathématiques Appliquées, CNRS UMR 8050, 61, avenue du Général de Gaulle, Université Paris–Est, 94010 Créteil, France
- Email: printems@u-pec.fr
- Received by editor(s): July 9, 2012
- Received by editor(s) in revised form: January 30, 2013
- Published electronically: January 27, 2014
- © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**83**(2014), 2325-2346 - MSC (2010): Primary 34A08, 45D05, 60H15, 60H35, 65M12, 65M60
- DOI: https://doi.org/10.1090/S0025-5718-2014-02803-2
- MathSciNet review: 3223334