A search for Wilson primes
HTML articles powered by AMS MathViewer
- by Edgar Costa, Robert Gerbicz and David Harvey;
- Math. Comp. 83 (2014), 3071-3091
- DOI: https://doi.org/10.1090/S0025-5718-2014-02800-7
- Published electronically: January 27, 2014
- PDF | Request permission
Abstract:
A Wilson prime is a prime $p$ such that $(p-1)! = -1 \pmod {p^2}$. We report on a search for Wilson primes up to $2 \times 10^{13}$, and describe several new algorithms that were used in the search. In particular, we give the first known algorithm that computes $(p-1)! \pmod {p^2}$ in average polynomial time per prime.References
- David H. Bailey, FFTs in external or hierarchical memory, Journal of Supercomputing 4 (1990), 23–35.
- N. G. W. H. Beeger, Quelques remarques sur les congruences $r^{p-1} \equiv 1 \pmod {p^2}$ et $(p-1)! \equiv -1 \pmod {p^2}$, Messenger of Mathematics 43 (1913), 72–84.
- —, On the congruence $(p-1)! \equiv -1 \pmod {p^2}$, Messenger of Mathematics 49 (1920), 177–178.
- Bruce C. Berndt, Ronald J. Evans, and Kenneth S. Williams, Gauss and Jacobi sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998. A Wiley-Interscience Publication. MR 1625181
- Daniel J. Bernstein, Fast multiplication and its applications, Algorithmic number theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ., vol. 44, Cambridge Univ. Press, Cambridge, 2008, pp. 325–384. MR 2467550
- Alin Bostan, Pierrick Gaudry, and Éric Schost, Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator, SIAM J. Comput. 36 (2007), no. 6, 1777–1806. MR 2299425, DOI 10.1137/S0097539704443793
- Richard P. Brent and H. T. Kung, A regular layout for parallel adders, IEEE Trans. Comput. 31 (1982), no. 3, 260–264. MR 648375, DOI 10.1109/TC.1982.1675982
- S. Chowla, B. Dwork, and Ronald Evans, On the mod $p^2$ determination of $\left ({(p-1)/2\atop (p-1)/4}\right )$, J. Number Theory 24 (1986), no. 2, 188–196. MR 863654, DOI 10.1016/0022-314X(86)90102-2
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Richard Crandall, Karl Dilcher, and Carl Pomerance, A search for Wieferich and Wilson primes, Math. Comp. 66 (1997), no. 217, 433–449. MR 1372002, DOI 10.1090/S0025-5718-97-00791-6
- Claus Diem, On the complexity of some computational problems in the Turing model, Preprint, http://www.math.uni-leipzig.de/~diem/preprints/turing.pdf, 2011.
- Harvey Dubner, Searching for Wilson primes, J. Recreational Math. 21 (1989), no. 1, 19–20.
- Carl-Erik Fröberg, Diagonalization of Hermitian matrices, Math. Tables Aids Comput. 12 (1958), 219–220. MR 100351, DOI 10.1090/S0025-5718-1958-0100351-8
- Carl-Erik Fröberg, Investigation of the Wilson remainders in the interval $3\leq p<50,000$, Ark. Mat. 4 (1963), 479–499 (1963). MR 174510, DOI 10.1007/BF02591598
- Martin Fürer, Faster integer multiplication, SIAM J. Comput. 39 (2009), no. 3, 979–1005. MR 2538847, DOI 10.1137/070711761
- Karl Goldberg, A table of Wilson quotients and the third Wilson prime, J. London Math. Soc. 28 (1953), 252–256. MR 55358, DOI 10.1112/jlms/s1-28.2.252
- Törbjorn Granlund, The gnu Multiple Precision Arithmetic Library (Version 5.0.5), http://gmplib.org/.
- David Harvey, Faster arithmetic for number-theoretic transforms, preprint http://arxiv.org/abs/1205.2926, 2012.
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- K. E. Kloss, Some number-theoretic calculations, J. Res. Nat. Bur. Standards Sect. B 69B (1965), 335–336. MR 190057, DOI 10.6028/jres.069B.035
- Esayas George Kundert, A von Staudt-Clausen theorem for certain Bernoullianlike numbers and regular primes of the first and second kind, Fibonacci Quart. 28 (1990), no. 1, 16–21. MR 1035125
- Serge Lang, Cyclotomic fields I and II, 2nd ed., Graduate Texts in Mathematics, vol. 121, Springer-Verlag, New York, 1990. With an appendix by Karl Rubin. MR 1029028, DOI 10.1007/978-1-4612-0987-4
- Emma Lehmer, Questions, Discussions, and Notes: A Note on Wilson’s Quotient, Amer. Math. Monthly 44 (1937), no. 4, 237–238. MR 1523917, DOI 10.2307/2300697
- Emma Lehmer, Questions, Discussions, and Notes: On the Congruence $(p-1)!\equiv -1 (\operatorname {mod} p^2)$, Amer. Math. Monthly 44 (1937), no. 7, 462. MR 1524028, DOI 10.2307/2301133
- Hendrik W. Lenstra Jr., Euclidean number fields. I, Math. Intelligencer 2 (1979/80), no. 1, 6–15. MR 558668, DOI 10.1007/BF03024378
- G. B. Mathews, Theory of numbers, Chelsea Publishing Co., New York, 1961. 2nd ed. MR 126402
- Christos H. Papadimitriou, Computational complexity, Addison-Wesley Publishing Company, Reading, MA, 1994. MR 1251285
- Erna H. Pearson, On the congruences $(p-1)!\equiv -1$ and $2^{p-1}\equiv 1\,(\textrm {mod}\,p^{2})$, Math. Comp. 17 (1964), 194–195. MR 159780, DOI 10.1090/S0025-5718-1963-0159780-0
- Paulo Ribenboim, The book of prime number records, Springer-Verlag, New York, 1988. MR 931080, DOI 10.1007/978-1-4684-9938-4
- Paulo Ribenboim and Wilfrid Keller, Die welt der primzahlen: Geheimnisse und rekorde, Springer-Verlag, New York, 1996.
- A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen) 7 (1971), 281–292 (German, with English summary). MR 292344, DOI 10.1007/bf02242355
- Arnold Schönhage, Andreas F. W. Grotefeld, and Ekkehart Vetter, Fast algorithms, Bibliographisches Institut, Mannheim, 1994. A multitape Turing machine implementation. MR 1290996
- Victor Shoup, NTL: a library for doing number theory (Version 5.5.2), http://www.shoup.net/ntl/.
- The PARI Group, Bordeaux, PARI/GP, version 2.3.5, 2010, available from http://pari.math.u-bordeaux.fr/.
- Joachim von zur Gathen and Victor Shoup, Computing Frobenius maps and factoring polynomials, Comput. Complexity 2 (1992), no. 3, 187–224. MR 1220071, DOI 10.1007/BF01272074
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- Douglas Wikström, On the $l$-ary GCD-algorithm in rings of integers, Automata, languages and programming, Lecture Notes in Comput. Sci., vol. 3580, Springer, Berlin, 2005, pp. 1189–1201. MR 2184711, DOI 10.1007/11523468_{9}6
Bibliographic Information
- Edgar Costa
- Affiliation: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012-1185
- MR Author ID: 1041071
- ORCID: 0000-0003-1367-7785
- Email: edgarcosta@nyu.edu
- Robert Gerbicz
- Affiliation: Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
- Email: robert.gerbicz@gmail.com
- David Harvey
- Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia
- MR Author ID: 734771
- ORCID: 0000-0002-4933-658X
- Email: d.harvey@unsw.edu.au
- Received by editor(s): October 31, 2012
- Received by editor(s) in revised form: December 5, 2012, January 31, 2013, and February 3, 2013
- Published electronically: January 27, 2014
- Additional Notes: The first author was partially supported by FCT doctoral grant SFRH/BD/ 69914/2010.
The third author was partially supported by the Australian Research Council, DECRA Grant DE120101293. - © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 83 (2014), 3071-3091
- MSC (2010): Primary 11A07; Secondary 11Y16
- DOI: https://doi.org/10.1090/S0025-5718-2014-02800-7
- MathSciNet review: 3246824