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L1 ERROR ESTIMATES FOR DIFFERENCE APPROXIMATIONS

OF DEGENERATE CONVECTION-DIFFUSION EQUATIONS

K. H. KARLSEN, N. H. RISEBRO, AND E. B. STORRØSTEN

Abstract. We analyze monotone finite difference schemes for strongly de-
generate convection-diffusion equations in one spatial dimension. These non-
linear equations are well-posed within a class of (discontinuous) entropy so-
lutions. We prove that the L1 error between the approximate and exact so-
lutions is O(Δx1/3), where Δx is the spatial grid parameter. This result

should be compared with the classical O(Δx1/2) error estimate for conserva-

tion laws (Kuznecov, 1976), and a recent estimate of O(Δx1/11) for degenerate
convection-diffusion equations (Karlsen, Koley, Risebro 2012).

1. Introduction

Nonlinear convection-dominated flow problems arise in a range of applications,
such as fluid dynamics, meteorology, transport of oil and gas in porous media,
electro-magnetism, as well as in many other applications. As a consequence it has
become a very important undertaking to construct robust, accurate, and efficient
methods for the numerical approximation of such problems. Over the years a large
number of stable (convergent) numerical methods have been developed for linear
and nonlinear convection-diffusion equations in which the “diffusion part” is small,
or even vanishing, relative to the “convection part” of the equation. There is a
large literature on this topic, and we will provide a few relevant references later.

One central but exceedingly difficult issue relating to numerical methods for
convection-diffusion equations, is the derivation of (a priori) error estimates that
are robust in the singular limit as the diffusion coefficient vanishes, avoiding the
exponential growth of error constants. This problem has been resolved only partly
in special situations, such as for linear equations or in the completely degenerate
case of no diffusion (scalar conservation laws). For general nonlinear equations
containing both convection and (degenerate) diffusion terms this is a long standing
open problem in numerical analysis.

This paper makes a small contribution to this general problem by deriving an
error estimate for a class of simple difference schemes for nonlinear and strongly
degenerate convection-diffusion problems of the form

(1.1)

{
∂tu+ ∂xf(u) = ∂2

xA(u), (x, t) ∈ ΠT ,

u(0, x) = u0(x), x ∈ R,
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where ΠT = R × (0, T ) for some fixed final time T > 0, and u(x, t) is the scalar
unknown function that is sought. The initial function u0 : R → R is a given
integrable and bounded function, while the convection flux f : R → R and the
diffusion function A : R → R are given functions satisfying

f,A locally C1; A(0) = 0; A nondecreasing.

The moniker strongly degenerate means that we allow A′(u) = 0 for all u in some
interval [α, β] ⊂ R. Thus, the class of equations becomes very general, including
purely hyperbolic equations (scalar conservation laws),

(1.2) ∂tu+ ∂xf(u) = 0,

as well as nondegenerate (uniformly parabolic) equations, such as the heat equation
∂tu = ∂2

xu, and point-degenerate diffusion equations, such as the heat equation with
a power-law nonlinearity: ∂tu = ∂x(u

m∂xu), which is degenerate at u = 0.
Whenever the problem (1.1) is uniformly parabolic (i.e., A′ ≥ η for some η > 0),

it is well known that the problem admits a unique classical (smooth) solution.
On the other hand, in the strongly degenerate case, (1.1) must be interpreted
in the weak sense to account for possibly discontinuous (shock wave) solutions.
Regarding weak solutions, it turns out that one needs an additional condition,
the so-called entropy condition, to ensure that (1.1) is well-posed. More precisely,
the following is known: For u0 ∈ L1(R) ∩ L∞(R), there exists a unique solution
u ∈ C((0, T );L1(Rd)), u ∈ L∞(ΠT ) of (1.1) such that ∂xA(u) ∈ L2(ΠT ) and for all
convex functions S : R → R with q′S = f ′S′ and r′S = A′S′,

(1.3) ∂tS(u) + ∂xqS(u)− ∂2
xrS(u) ≤ 0 in the weak sense on [0, T )× R.

The satisfaction of these inequalities for all convex S is the entropy condition,
and a weak solution satisfying the entropy condition is called an entropy solution.
The well-posedness of entropy solutions is a famous result due to Kružkov [21]
for conservation laws (1.2), and a more recent work by Carrillo [5] extends this
to degenerate parabolic equations (1.1). These results are available in the multi-
dimensional context, and we refer to [1,10] for an overview of the relevant literature.
For uniqueness of entropy solutions in the BV class; see [26, 28].

One traditional way of constructing entropy solutions is by the vanishing viscosity
method, which starts off from classical solutions to the nondegenerate equation

∂tuη + ∂xf(uη) = ∂2
xA(uη) + η∂2

xuη, η > 0,

and establishes the strong convergence of uη as η → 0 by deriving BV estimates
that are independent of η; see Vol′pert and Hudjaev [27].

Besides proving that uη converges in the L1 norm to the unique entropy solution
u of (1.1), it is possible to prove the error estimate

(1.4) ‖uη(·, t)− u(·, t)‖L1 ≤ C
√
η, (whenever u0 ∈ BV );

see [14] (cf. also [15]). The error bound (1.4) can also be obtained as a consequence
of the more general continuous dependence estimate derived in [9]; see also [6, 18].

Herein we are interested in the much more difficult problem of deriving error
estimates for numerical approximations of entropy solutions to convection-diffusion
equations. Convergence results (without error estimates) have been obtained for
finite difference schemes [12] (see also [13,19]); finite volume schemes [16] (see also
[2]); operator splitting methods [17]; and BGK approximations [3, 4], to mention
just a few references. For a posteriori estimates for finite volume schemes, see [24].
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To be concrete in what follows, let us for simplicity assume f ′ ≥ 0 and consider
the semi-discrete difference scheme

(1.5)
d

dt
uj(t) +

f(uj)− f(uj−1)

Δx
=

A(uj+1)− 2A(uj) +A(uj−1)

Δx2
,

where uj(t) ≈ u(t, jΔx) and Δx > 0 is the spatial mesh size. Convergence of
this scheme can be proved as in the works [12,13], where explicit and implicit time
discretizations are treated. Denote by uΔx(x, t) the piecewise constant interpolation
of {uj(t)}j . The basic question we address in this paper is the following one: Does

there exist a number r ∈ (0, 1) and a constant C, independent of Δx, such that

(1.6) ‖uΔx(·, t)− u(·, t)‖L1 ≤ CΔxr,

where u is the unique entropy solution of (1.1). We refer to the number r as the
rate of convergence.

In the purely hyperbolic case (1.2) (A′ ≡ 0), the answer to this question is a
classical result due to Kuznetsov [22], who proved that the rate of convergence is
1/2 for viscous approximations as well as monotone difference schemes, and this
is optimal for discontinuous solutions. The work of Kuznetsov [22] turned out to
be extremely influential, and by now a large number of related works have been
devoted to error estimation theory for conservation laws. We refer to [7] for an
overview of the relevant results and literature.

Unfortunately, the situation is unclear in the degenerate parabolic case (1.1). Let
us expose some reasons why adding a nonlinear diffusion term to (1.2) can make the
error analysis significantly more difficult than in the streamlined Kuznetsov theory.
First of all, it is well known that the purely hyperbolic difference scheme

(1.7)
d

dt
uj(t) +

f(uj)− f(uj−1)

Δx
= 0

has as a model equation, the second order viscous equation

∂tu+ ∂xf(u) =
Δx

2
∂2
xf(u),

an equation that is compatible with the notion of entropy solution for (1.2). Indeed,
an error estimate for this viscous equation is highly suggestive for what to expect
for the upwind scheme (1.7) (this is of course what Kuznetsov proved). However,
for convection-diffusion equations such as (1.1) the situation changes. The model
equation for (1.5) is no longer second order but rather fourth order:

∂tu+ ∂xf(u) = ∂2
xA(u) +

Δx

2
∂2
xf(u)−

Δx2

12
∂4
xA(u);

hence the error estimate (1.4) appears no longer so relevant for numerical schemes.
Another added difficulty comes from the necessity to work with an explicit form
of the parabolic dissipation term associated with (1.1). Indeed, in the analysis one
needs to replace (1.3) by the following more precise entropy equation [5],

∂t |u− c|+ ∂x
(
sign(u− c)(f(u)− f(c)

)
− ∂2

x |A(u)−A(c)|
= −sign′(A(u)−A(c)) |∂xA(u)|2 , c ∈ R,

(1.8)

which is formally obtained multiplying (1.1) by sign (A(u)−A(c)), assuming for
the sake of this discussion that A′(·) > 0. The term on the right-hand side is
the parabolic dissipation term, which is a finite (signed) measure and thus very
singular. To illustrate why the parabolic dissipation term is needed, let u(y, s) and
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v(x, t) be two solutions satisfying (1.8). In the entropy equation for u(y, s) one
takes c = v(x, t), while in the entropy equation for v(x, t) one takes c = u(y, s).
Adding the two resulting equations yields

(∂t + ∂s) |u− v|+ (∂x + ∂y)
(
sign(u− v)(f(u)− f(v)

))
− (∂2

x + ∂2
y) |A(u)−A(v)| = −sign′(A(u)−A(v))

(
|∂yA(u)|2 + |∂xA(v)|2

)
,

By adding −2∂2
xy |A(u)−A(v)| to both sides of this equation, noting that

−2∂2
xy |A(u)−A(v)| = 2sign′(A(u)−A(v))∂yA(u)∂xA(v),

we arrive at

(∂t + ∂s) |u− v|+ (∂x + ∂y)
(
sign(u− v)(f(u)− f(v)

))
− (∂2

x − 2∂2
xy + ∂2

y) |A(u)− A(v)|

= −sign′(A(u)−A(v))
(
|∂yA(u)| − |∂xA(v)|

)2
≤ 0,

(1.9)

from which the contraction property d
dt ‖u(·, t)− v(·, t)‖L1 ≤ 0 follows [5]. Similarly,

to obtain error estimates for numerical methods, it is necessary to derive a “discrete”
version of (1.9) with v replaced by uΔx. The main challenge is to suitably replicate
at the discrete level the delicate balance between the two terms in (1.9) involving
A; the difficulty stems from the lack of a chain rule for finite differences.

Despite the mentioned difficulties, in this paper we will prove that there exists
a constant C, independent of Δx, such that for any t > 0,

‖uΔx(·, t)− u(·, t)‖L1 ≤ CΔx
1
3 .

The only other work we are aware of that provides L1 error estimates for numerical
approximations of (1.1) is [20]; therein (1.6) is established with r = 1

11 ; if A is

a linear function, then the convergence rate is the usual one, namely r = 1
2 . In

addition to the semi-discrete scheme (1.7), we will prove similar results for fully
discrete (implicit and explicit) difference schemes.

Roughly speaking, the reason is two-fold for why we can significantly improve
the result in [20]. First, we are herein able to provide a more faithful analog of
(1.9) at the discrete level. Second, since sign′(·) is singular, one has to work with
a Lipschitz continuous approximation signε(·) of the sign function sign(·). The use
of this approximation breaks the symmetry of the corresponding entropy fluxes,
and introduces new error terms that depend on the parameter ε; the process of
“balancing” terms involving Δx and ε lowers the convergence rate (to r = 1

11 ) [20].
In the present paper we are able to dispense with this balancing act. Indeed, we
show that it is possible to send ε → 0 independently of Δx.

The remaining part of this paper is organized as follows: In Section 2 we list
some relevant a priori estimates satisfied by viscous approximations and entropy
solutions, and provide a definition of entropy solutions. The semi-discrete difference
scheme is defined and proved to be well-posed in Section 3. We also list several
relevant a priori estimates. Section 4 is devoted to the proof of the error estimate.
In Section 5 we show that the proof in Section 4 can be adapted to a fully discrete
scheme that is implicit in the time variable. In fact, we go through all the steps of
the proof and provide the details where there are considerable differences between
the two cases. In Section 6 the explicit version of the scheme is treated. We end
the paper with a few concluding remarks in Section 7.
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2. Preliminary material

Set Aη(u) := A(u)+ηu for any fixed η > 0, and consider the uniformly parabolic
problem

(2.1)

{
uη
t + f(uη)x = Aη(uη)xx, (x, t) ∈ ΠT ,

uη(x, 0) = u0(x), x ∈ R.

It is well known that (2.1) admits a unique classical (smooth) solution.
We collect some relevant (standard) a priori estimates in the next three lemmas.

Lemma 2.1. Suppose u0 ∈ L∞(R) ∩ L1(R) ∩ BV (R), and let uη be the unique
classical solution of (2.1). Then for any t > 0,

‖uη(·, t)‖L1(R) ≤
∥∥u0

∥∥
L1(R)

,

‖uη(·, t)‖L∞(R) ≤ ‖u0‖L∞(R),

|uη(·, t)|BV (R) ≤
∣∣u0

∣∣
BV (R)

.

For a proof of the previous and next lemmas, see for example [27].

Lemma 2.2. Suppose u0 ∈ L∞(R) ∩ L1(R) and f(u0)−A(u0)x ∈ BV (R). Let uη

be the unique classical solution of (2.1). Then for any t1, t2 > 0,

‖uη(·, t2)− uη(·, t1)‖L1(R) ≤
∣∣f(u0)−A(u0)x

∣∣
BV (R)

|t2 − t1| .

Regarding the following lemma, see [12, 25].

Lemma 2.3. Suppose u0 ∈ L∞(R)∩L1(R) and f(u0)−A(u0)x ∈ L∞(R)∩BV (R).
Let uη be the unique classical solution of (2.1). Then for any t > 0,

‖f(uη(·, t))−A(uη(·, t))x‖L∞(R) ≤
∥∥f(u0)−A(u0)x

∥∥
L∞(R)

,

|f(uη(·, t))−A(uη(·, t))x|BV (R) ≤
∣∣f(u0)− A(u0)x

∣∣
BV (R)

.

Note that ‖A(uη)x‖L∞
t (L∞

x ) and ‖A(uη)xx‖L∞
t (L1

x)
are bounded independently of

η provided that A(u0)x is in BV (R).
The results above imply that {uη}η>0 is relatively compact in C([0, T ];L1

loc(R)).
If u = limη→0 u

η, then

‖uη − u‖L1(ΠT ) ≤ Cη1/2,

for some constant C which does not depend on η; see [14]. Moreover, u is an entropy
solution according to the following definition.

Definition 2.1. An entropy solution of the Cauchy problem (1.1) is a measurable
function u = u(x, t) satisfying:

(D.1) u ∈ L∞(ΠT ) ∩ C((0, T );L1(R)).
(D.2) A(u) ∈ L2((0, T );H1(R)).
(D.3) For all constants c ∈ R and test functions 0 ≤ ϕ ∈ C∞

0 (R × [0, T )), the
following entropy inequality holds:∫∫

ΠT

|u− c|ϕt + sign (u− c) (f(u)− f(c))ϕx + |A(u)−A(c)|ϕxx dxdt

+

∫
R

|u0 − c|ϕ(x, 0) dx ≥ 0.
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The uniqueness of entropy solutions follows from the work [5]. Actually, in view
of the above a priori estimates, the relevant functional class is BV (ΠT ), in which
case we can replace (D.2) by the condition A(u)x ∈ L∞(ΠT ). For a uniqueness
result in the BV class, see [28].

3. Difference scheme

We start by specifying the numerical flux to be used in the difference scheme.

Definition 3.1 (Numerical flux). We call a function F ∈ C1(R2) a two-point
numerical flux for f if F (u, u) = f(u) for u ∈ R. If

∂

∂u
F (u, v) ≥ 0 and

∂

∂v
F (u, v) ≤ 0

holds for all u, v ∈ R, we call F monotone.

Let Fu and Fv denote the partial derivatives of F with respect to the first and
second variable, respectively. We will also assume that F is Lipschitz continuous.

Let Δx > 0 and set xj = jΔx for j ∈ Z, and define

D±σj = ±σj±1 − σj

Δx
,

for any sequence {σj}.
We may now define a semi-discrete approximation of the solution to (1.1) as the

solution to the (infinite) system of ordinary differential equations

(3.1)

{
d
dtuj(t) +D−Fj+1/2 = D−D+A(uj), t > 0,

uj(0) =
1

Δx

∫
Ij
u0(x) dx,

j ∈ Z,

where Fj+1/2 = F (uj , uj+1) is a numerical flux function and Ij = (xj−1/2, xj+1/2].
The problem above can be viewed as an ordinary differential equation in the

Banach space 	1(Z) (see, e.g., [23]). To get bounds independent of Δx we define

‖σ‖1 = Δx
∑
j

|σj | and |σ|BV =
∑
j

|σj+1 − σj | = ‖D+σ‖1 .

If these are bounded we say that σ = {σj} is in 	1 and of bounded variation.
Let u(t) = {uj(t)}j∈Z

, u0 = {uj(0)}j∈Z
, and define the operator A : 	1 → 	1 by

(A(u))j := D−(F (uj , uj+1)−D+A(uj)). Then (3.1) takes the following form:

du

dt
+A(u) = 0, t > 0, u(0) = u0.

This problem has a unique continuously differentiable solution since A is Lipschitz
continuous for each fixed Δx > 0. This solution defines a strongly continuous
semigroup S(t) on 	1. If S also satisfies

‖S(t)u− S(t)v‖1 ≤ ‖u− v‖1 for u, v ∈ 	1,

we say that it is nonexpansive. The next lemma sums up some important properties
of the solutions to (3.1) (for a proof see [11]).
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Lemma 3.1. Suppose that F is monotone. Then there exists a unique solution
u = {uj} to (3.1) on [0, T ] with the following properties:

(a) ‖u(t)‖1 ≤
∥∥u0

∥∥
1
.

(b) For every j ∈ Z and t ∈ [0, T ],

inf
k

{
u0
k

}
≤ uj(t) ≤ sup

k

{
u0
k

}
.

(c) |u(t)|BV ≤
∣∣u0

∣∣
BV

.

(d) If v = {vj} is a another solution with initial data v0, then

‖u(t)− v(t)‖1 ≤
∥∥u0 − v0

∥∥
1
.

Lemma 3.2. If F is monotone, then

‖F (uj , uj+1)−D+A(uj)‖�∞ ≤
∥∥F (u0

j , u
0
j+1)−D+A(u0

j)
∥∥
�∞

,(3.2)

|F (uj , uj+1)−D+A(uj)|BV ≤
∣∣F (u0

j , u
0
j+1)−D+A(u0

j)
∣∣
BV

.(3.3)

Furthermore, t �→ {uj(t)}j∈Z
is 	1 Lipschitz continuous.

Proof. The proof follows [12]. Let vj = Δx
∑

k≤j
duk

dt . Then vj satisfies

(3.4) vj = Δx

j∑
k=−∞

D−(D+A(uk)− F (uk, uk+1)) = D+A(uj)− F (uj , uj+1),

and we may define vj for all t ∈ [0, T ]. Note that {vj(t)} is in 	1 for all t by
Lemma 3.1. Differentiating (3.4) with respect to t we obtain

dvj
dt

=
1

Δx

[
a(uj+1)

duj+1

dt
− a(uj)

duj

dt

]
− Fu(uj , uj+1)

duj

dt
− Fv(uj , uj+1)

duj+1

dt
,

where a(u) = A′(u). Note that D−vj =
duj

dt and D+vj =
duj+1

dt . Therefore

(3.5)
dvj
dt

=

(
1

Δx
a(uj+1)− Fv(uj , uj+1)

)
D+vj

−
(

1

Δx
a(uj) + Fu(uj , uj+1)

)
D−vj .

Assume vj0(t0) is a local maximum in j. Then D+vj0(t0) ≤ 0 and D−vj0(t0) ≥ 0 so
vj0
dt (t0) ≤ 0 since F is monotone. Similarly, if vj0(t0) is a local minimum in j, then
vj0
dt (t0) ≥ 0. Then inequality (3.2) follows by the fact that {vj(t)} ∈ 	1. Consider

(3.3). We want to show that d
dt (|v(t)|BV ) ≤ 0. Now,

d

dt

(∑
j

|vj+1 − vj |
)
=

∑
j

sign (vj+1 − vj)
d

dt
(vj+1 − vj) ,
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so we may use (3.5). Thus

d

dt
|v(t)|BV

=
∑
j

(
1

Δx
a(uj+2)− Fv(uj+1, uj+2)

)
(D+vj+1) sign(vj+1 − vj)

−
∑
j

(
1

Δx
a(uj+1) + Fu(uj+1, uj+2)

)
|D+vj |

−
∑
j

(
1

Δx
a(uj+1)− Fv(uj , uj+1)

)
|D+vj |

+
∑
j

(
1

Δx
a(uj) + Fu(uj , uj+1)

)
((D−vj)sign(vj+1 − vj))

=
∑
j

(
1

Δx
a(uj+1)− Fv(uj , uj+1)

)
[(D+vj) sign (vj − vj−1)− |D+vj |]

+
∑
j

(
1

Δx
a(uj) + Fu(uj , uj+1)

)
[(D−vj)sign(vj+1 − vj)− |D−vj |]

≤ 0,

since a(u) > 0, Fv ≤ 0, and Fu ≥ 0. Given the preceding estimates, the 	1 Lipschitz
continuity is straightforward to prove. �

It turns out that we need more conditions on F than mere monotonicity.

Definition 3.2. Given an entropy pair (ψ, q) and a numerical flux F , we define
Q ∈ C1(R2) by

Q(u, u) = q(u),

∂

∂v
Q(v, w) = ψ′(v)

∂

∂v
F (v, w),

∂

∂w
Q(v, w) = ψ′(w)

∂

∂w
F (v, w).

We call Q a numerical entropy flux.

The next lemma gives a sufficient condition on the numerical flux to ensure that
there exists a numerical entropy flux.

Lemma 3.3. Given a two-point numerical flux F , assume that there exist C1

functions F1, F2 such that

(3.6) F (u, v) = F1(u) + F2(v), F ′
1(u) + F ′

2(u) = f ′(u),

for all relevant u and v. Then there exists a numerical entropy flux Q for any
entropy flux pair (ψ, q).

Proof. Let (ψ, q) be an entropy pair. Then q has the form

q(u) =

∫ u

c

ψ′(z)f ′(z) dz + C,
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for some constant C. Define Q by

(3.7) Q(u, v) =

∫ u

c

ψ′(z)F ′
1(z) dz +

∫ v

c

ψ′(z)F ′
2(z) dz + C.

It is easily verified that Q is a numerical entropy flux. �

Let us list a few numerical flux functions to which Lemma 3.3 applies.

Example 3.1 (Engquist-Osher flux). Let

f ′
+(s) = max(f ′(s), 0) and f ′

−(s) = min(f ′(s), 0).

Then, in the terminology of Lemma 3.3, let F (u, v) = F1(u) + F2(v) with

F1(u) = f(0) +

∫ u

0

f ′
+(s) ds and F2(v) =

∫ v

0

f ′
−(s) ds.

It is easily seen that the criteria given in Lemma 3.3 are satisfied, and F is also
clearly monotone.

Example 3.2. Let a, b ∈ R and define

F1(u) = af(u) + bu and F2(v) = (1− a)f(v)− bv.

Note that F (u, v) = F1(u) + F2(v) is monotone if

a inf
u
{f ′(u)} ≥ −b and (1− a) sup

u
{f ′(u)} ≤ b.

This example includes both the upwind scheme and the Lax-Friedrichs scheme.

From a more general point of view we may consider any flux splitting, that is,
f(u) = f+(u) + f−(u) with (f+)′(u) ≥ 0 and (f−)′(u) ≤ 0 for all u ∈ R. Then the
numerical flux

F (u, v) = f+(u) + f−(v)

satisfies the assumptions of Lemma 3.3. Note also that any convex combination of
numerical flux functions which satisfy the hypothesis of Lemma 3.3, itself satisfies
the assumptions of the lemma.

If (3.6) holds, then we have a representation of Q given by (3.7). It follows that

(3.8) Q(u, v) = q(u) +

∫ v

u

ψ′(z)F ′
2(z) dz.

Note that we may obtain another representation depending on F1 by splitting up
the first integral.

4. Error estimate

Let {uj}j∈Z
be the solution to (3.1). We associate with it the piecewise constant

function

(4.1) uΔx(x, t) = uj(t) for x ∈ Ij .

To derive the error estimate we need many of the uniform bounds from Sections 2
and 3. For these estimates to hold independently of Δx, we make the following
assumptions on the initial data u0:

(i) u0 ∈ L1(R) ∩ L∞(R) ∩BV (R).
(ii) A(u0)x ∈ BV (R).

We may now state the theorem.
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Theorem 4.1. Let u be the entropy solution to (1.1) and {uj(t)}j∈Z
solve the

semi-discrete difference scheme (3.1). If u0 satisfies (i) and (ii) above, then for all
sufficiently small Δx,

‖uΔx(·, t)− u(·, t)‖L1(R) ≤
∥∥u0

Δx − u0
∥∥
L1(R)

+ CTΔx
1
3 , t ∈ [0, T ],

where the constant CT depends on A, f , u0, and T , but not on Δx.

Let us define some of the functions we are going to work with. First, we will use
the following approximation of the sign function:

signε(σ) =

{
sin(πσ2ε ) for |σ| < ε,

sign (σ) otherwise,

where ε > 0. Note that signε is continuously differentiable and nondecreasing. We
define

|u|ε =
∫ u

0

signε(z) dz.

Furthermore, we introduce an entropy pair (ψε, qε) defined by

ψε(u, c) =

∫ u

c

signε(A(z)−A(c)) dz,

qε(u, c) =

∫ u

c

ψ′
ε(z, c)f

′(z) dz =

∫ u

c

signε(A(z)−A(c))f ′(z) dz,

where ψ′
ε is the derivative with respect to the first variable.

Lemma 4.1. Suppose A′ > 0. Let u = u(y, s) be the classical solution of (1.1).
Then for any constant c ∈ R,

∂sψε(u, c) + ∂yqε(u, c)− ∂2
y |A(u)−A(c)|ε = −∂yψ

′
ε(u, c)∂yA(u).

Proof. Multiply equation (1.1) by ψ′
ε(u, c) to obtain

∂sψε(u, c) + ∂yqε(u, c) = ψ′
ε(u, c)∂

2
yA(u).

The term on the right may be rewritten according to

∂y(ψ
′
ε(u, c)∂yA(u)) = ∂yψ

′
ε(u, c)∂yA(u) + ψ′

ε(u, c)∂
2
yA(u).

By the chain rule,

∂y(ψ
′
ε(u, c)∂yA(u)) = ∂2

y |A(u)−A(c)|ε.

Combining these equalities proves the lemma. �

The next lemma is a simple identity taken from [8].

Lemma 4.2. For any differentiable function g and all real numbers a, b, c,

ψ′
ε(a, c)(g(b)− g(a)) =

∫ b

c

ψ′
ε(z, c)g

′(z) dz −
∫ a

c

ψ′
ε(z, c)g

′(z) dz

+

∫ b

a

ψ′′
ε (z, c)(g(z)− g(b)) dz.
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Proof. Integration by parts yields

ψ′
ε(ζ, c)(g(ζ)− g(b)) =

∫ ζ

c

ψ′
ε(z, c)g

′(z) dz +

∫ ζ

c

ψ′′
ε (z, c)(g(z)− g(b)) dz,

for any ζ ∈ R. Take the two equations obtained by taking ζ = a and ζ = b and
subtract one from the other. �

Lemma 4.3. Let uj be the solution to (3.1). Then for all c ∈ R,

∂tψε(uj , c) +D−Q
c(uj , uj+1)−D−D+|A(uj)−A(c)|ε

≤ − 1

(Δx)2

∫ uj

uj+1

ψ′′
ε (z, c)(A(z)−A(uj+1)) dz

− 1

(Δx)2

∫ uj

uj−1

ψ′′
ε (z, c)(A(z)−A(uj−1)) dz,

where Qc(u, v) := Qc
1(u) +Qc

2(v),

Qc
1(u) :=

∫ u

c

ψ′
ε(z, c)F

′
1(z) dz, Qc

2(v) :=

∫ v

c

ψ′
ε(z, c)F

′
2(z) dz,

for all real numbers u and v.

Proof. From (3.1) it follows that

ψ′
ε(uj , c)∂tuj + ψ′

ε(uj , c)D−F (uj , uj+1) = ψ′
ε(uj , c)D−D+A(uj).

Note that

ψ′
ε(uj , c)D−F (uj , uj+1) = ψ′

ε(uj , c)D−F1(uj) + ψ′
ε(uj , c)D+F2(uj),

and so we may apply Lemma 4.2. Let g = F1. Then we obtain

ψ′
ε(uj , c)D−F1(uj) = D−Q

c
1(uj)−

1

Δx

∫ uj−1

uj

ψ′′
ε (z, c)(F1(z)− F1(uj−1)) dz.

Similarily, let g = F2 to obtain

ψ′
ε(uj , c)D+F2(uj) = D+Q

c
2(uj) +

1

Δx

∫ uj+1

uj

ψ′′
ε (z, c)(F2(z)− F2(uj+1)) dz.

Finally, apply Lemma 4.2 twice with g = A. Adding the equations we obtain

ψ′
ε(uj , c) (A(uj−1)− 2A(uj) +A(uj+1))

=

∫ uj+1

uj

ψ′
ε(z, c)A

′(z) dz +

∫ uj−1

uj

ψ′
ε(z, c)A

′(z) dz

+

∫ uj+1

uj

ψ′′
ε (z, c)(A(z)− A(uj+1)) dz

+

∫ uj−1

uj

ψ′′
ε (z, c)(A(z)−A(uj−1)) dz.



2728 K. H. KARLSEN, N. H. RISEBRO, AND E. B. STORRØSTEN

Note that[∫ uj+1

uj

ψ′
ε(z, c)A

′(z) dz +

∫ uj−1

uj

ψ′
ε(z, c)A

′(z) dz

]

=

[∫ uj+1

uj

∂

∂z
|A(z)−A(c)|ε dz +

∫ uj−1

uj

∂

∂z
|A(z)−A(c)|ε dz

]

=
[
|A(uj−1)−A(c)|ε − 2|A(uj)−A(c)|ε + |A(uj+1)−A(c)|ε

]
.

Combining the above computations we obtain

∂tψε(uj , c) +D−Q
c(uj , uj+1)−D−D+|A(uj)−A(u)|ε = −Ec(uj−1, uj , uj+1),

where

Ec(uj−1, uj , uj+1) =
1

Δx

∫ uj

uj−1

ψ′′
ε (z, c)(F1(z)− F1(uj−1)) dz

− 1

Δx

∫ uj

uj+1

ψ′′
ε (z, c)(F2(z)− F2(uj+1)) dz

+
1

(Δx)2

∫ uj

uj+1

ψ′′
ε (z, c)(A(z)−A(uj+1)) dz

+
1

(Δx)2

∫ uj

uj−1

ψ′′
ε (z, c)(A(z)−A(uj−1)) dz.

The result follows from the monotonicity of F . �

We shall need the next lemma, which deals with a mixed term, in order to carry
out the “second order” doubling-of-the-variables argument.

Lemma 4.4. Let {uj} be some sequence and u some differentiable function of y.
Then (

1

Δx

∫ uj

uj−1

ψ′′
ε (z, u) dz +

1

Δx

∫ uj+1

uj

ψ′′
ε (z, u) dz

)
∂yA(u)

= −∂y(D− +D+)|A(uj)−A(u)|ε.

Proof. Let a, b be fixed real numbers. Then∫ b

a

ψ′′
ε (z, u) dzA(u)y

=

∫ b

a

sign′ε(A(z)−A(u))A(u)yA
′(z) dz

= − ∂

∂y

(∫ b

a

signε(A(z)−A(u))A′(z) dz

)

= − ∂

∂y
(|A(b)−A(u)|ε − |A(a)−A(u)|ε) .

Let a = uj−1, b = uj and a = uj , b = uj+1. Then add up the resulting equations
and divide by Δx. �

We are now in a position to carry out the doubling-of-the-variables argument.
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Lemma 4.5. Suppose A′ > 0. Let u = u(y, s) be the classical solution to (1.1) and
let {uj} = {uj(t)} be the solution to (3.1). Then

∂tψε(uj , u) + ∂sψε(u, uj) + ∂yqε(u, uj) +D−Q
u(uj , uj+1)

− (∂2
y + ∂y(D− +D+) +D−D+)|A(uj)−A(u)|ε) ≤ −Eε

j ,

where Eε
j := Eε[u](uj−1, uj , uj+1) with

Eε[u](uj−1, uj , uj+1) :=
1

(Δx)2

∫ uj

uj+1

ψ′′
ε (z, u)(A(z)−A(uj+1)) dz

+
1

(Δx)2

∫ uj

uj−1

ψ′′
ε (z, u)(A(z)−A(uj−1)) dz

− 1

Δx

∫ uj

uj−1

ψ′′
ε (z, u) dz ∂yA(u)

− 1

Δx

∫ uj+1

uj

ψ′′
ε (z, u) dz ∂yA(u)

+ ∂yψ
′
ε(u, uj)∂yA(u).

Proof. Let c = uj in Lemma 4.1 and c = u in Lemma 4.3. Then add up the
equations together with Lemma 4.4. �

Remark 4.1. Note that Eε
j is a function of y, s, t.

In what follows it will be necessary to work with the piecewice constant approx-
imation defined in (4.1). To do this we introduce some new notation. Let the shift
operator Sσ be defined for any ϕ : ΠT → R by

Sσϕ(x, t) = ϕ(x+ σ, t),

and let the difference quotient be defined by

D±ϕ = ±S±Δxϕ− ϕ

Δx
.

Note that for any two functions u, v of x we have D+(uv) = SΔxuD+v + (D+u)v.
If uv has compact support it follows that∫

R

(D+u)v dx = −
∫
R

uD−v dx.

We will refer to these identities as the Leibniz rule for difference quotients and
integration by parts for difference quotients. We will frequently integrate over the
domain Π2

T . To avoid writing four integral signs we will in general write one for
each domain ΠT and let dX = dxdtdyds.

Lemma 4.6. Suppose A′ > 0. Let uΔx = uΔx(x, t) be defined by (4.1), and let
u = u(y, s) be the classical solution of (1.1). Let ρ ∈ C∞

0 (R) satisfy

supp(ρ) ⊂ [−1, 1], ρ(−σ) = ρ(σ), ρ(σ) ≥ 0,

∫
R

ρ(σ) dσ = 1,

and set

ωr(x) =
1

r
ρ
(x
r

)
, ρα(ξ) =

1

α
ρ

(
ξ

α

)
, ρr0(t) =

1

r0
ρ

(
t

r0

)
,
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for positive (small) r, α and r0. Let ν and τ be such that 0 < ν < τ < T and define

ψα(t) := Hα(t− ν)−Hα(t− τ ), Hα(t) =

∫ t

−∞
ρα(ξ) dξ.

Let

ϕ(x, t, y, s) = ψα(t)ωr(x− y)ρr0(t− s).

To ensure ϕ|t=0 ≡ 0, ϕ|s=0 ≡ 0, we choose ν and τ such that 0 < r0 < min(ν, T−τ )
and 0 < α < min(ν − r0, T − τ − r0). Then∫∫

Π2
T

|uΔx − u| ρα(t− ν)ωrρr0 dX

+

∫∫
Π2

T

sign (uΔx − u) (f(uΔx)− f(u)) (D+ϕ+ ϕy) dX

+

∫∫
Π2

T

(∫ SΔxuΔx

uΔx

sign (z − u)F ′
2(z) dz

)
D+ϕdX

+

∫∫
Π2

T

|A(uΔx)−A(u)| (D−D+ϕ+ (D+ +D−)ϕy + ϕyy) dX

≥
∫∫

Π2
T

|uΔx − u| ρα(t− τ )ωrρr0 dX + lim inf
ε↓0

∫∫
Π2

T

Eε
ΔxϕdX,

(4.2)

where Eε
Δx(x, t, y, s) = Eε

j (t, y, s) for x ∈ Ij.

Remark 4.2. Note that both

ϕx + ϕy = 0 and ϕxx + 2ϕxy + ϕyy = 0.

In equation (4.2) these expressions appear with difference quotients instead of x-
derivatives. We expect that these equalities turn into good approximations as long
as Δx tends relatively fast to zero compared to r. We will show that this is the
case in what follows.

Proof. By Lemma 4.5 it follows that

∂tψε(uΔx, u) + ∂sψε(u, uΔx) + ∂yqε(u, uΔx) +D−Q
u(uΔx, SΔxuΔx)

− (∂2
y + ∂y(D− +D+) +D−D+)|A(uΔx)−A(u)|ε ≤ −Eε

Δx,

for all (x, t, y, s) ∈ Π2
T . Let us multiply with ϕ and integrate over Π2

T . Using both
ordinary integration by parts and integration by parts for difference quotients, we
obtain ∫∫

Π2
T

ψε(uΔx, u)ϕt + ψε(u, uΔx)ϕs dX

+

∫∫
Π2

T

qε(u, uΔx)ϕy +Qu(uΔx, SΔxuΔx)D+ϕdX

+

∫∫
Π2

T

|A(uΔx)−A(u)|ε(ϕyy + (D− +D+)ϕy +D−D+ϕ) dX

≥
∫∫

Π2
T

Eε
ΔxϕdX.
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We want to take the limit as ε ↓ 0. Consider the first term on the left. By the
dominated convergence theorem, for any a, b ∈ R,

lim
ε↓0

ψε(a, b) = lim
ε↓0

∫ a

b

signε(A(z)−A(b)) dz = |a− b| ,

since A′ > 0. It follows that

lim
ε↓0

ψε(uΔx, u) = lim
ε↓0

ψε(u, uΔx) = |uΔx − u|.

Furthermore,

(ϕt + ϕs)(x, t, y, s) = (ρα(t− ν)− ρα(t− τ ))ωr(x− y)ρr0(t− s),

so by the dominated convergence theorem

lim
ε↓0

∫∫
Π2

T

ψε(uΔx, u)ϕt + ψε(u, uΔx)ϕs dX

=

∫∫
Π2

T

|uΔx − u| ρα(t− ν)ωrρr0 dX −
∫∫

Π2
T

|uΔx − u| ρα(t− τ )ωrρr0 dX.

Consider the second term on the left. By (3.8) we obtain

Qu(uΔx, SΔxuΔx) = qε(uΔx, u) +

∫ SΔxuΔx

uΔx

signε(A(z)−A(u))F ′
2(z) dz.

Since A′ > 0,

lim
ε↓0

qε(uΔx, u) = lim
ε↓0

∫ uΔx

u

signε(A(z)−A(uΔx))f
′(z) dz

= sign (uΔx − u) (f(uΔx)− f(u)).

It follows that

lim
ε↓0

Qu(uΔx, SΔxuΔx) = sign (uΔx − u) (f(uΔx)− f(u))

+

∫ SΔxuΔx

uΔx

sign (z − u)F ′
2(z) dz.

As above

lim
ε↓0

qε(u, uΔx) = sign (u− uΔx) (f(u)− f(uΔx))

= sign (uΔx − u) (f(uΔx)− f(u)).

Hence, again by the dominated convergence theorem,

lim
ε↓0

∫∫
Π2

T

qε(u, uΔx)ϕy +Qu(uΔx, SΔxuΔx)D+ϕdX

=

∫∫
Π2

T

sign (uΔx − u) (f(uΔx)− f(u))(ϕy +D+ϕ) dX

+

∫∫
Π2

T

(∫ SΔxuΔx

uΔx

sign (z − u)F ′
2(z) dz

)
D+ϕdX. �

Lemma 4.7. Let Eε
Δx and ϕ be defined in Lemma 4.6. Then

lim inf
ε↓0

∫∫
Π2

T

Eε
ΔxϕdX ≥

∫
ΠT

lim inf
ε↓0

(∫
ΠT

Eε
Δxϕdyds

)
dxdt.
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Proof. Let

fε(x, t) :=

∫
ΠT

Eε
Δxϕdyds

and

hε(x, t) :=

∫
ΠT

∂y(D− +D+)|A(uΔx)−A(u)|εϕdyds.

Recall that Eε
Δx(x, t, y, s) = Eε

j (t, y, s) for x ∈ Ij , where E
ε
j is defined in Lemma 4.5.

Note that

Eε
j ≥− 1

Δx

∫ uj

uj−1

ψ′′
ε (z, u) dz ∂yA(u)

− 1

Δx

∫ uj+1

uj

ψ′′
ε (z, u) dz ∂yA(u),

so by Lemma 4.4 it follows that fε ≥ hε. Using integration by parts and the triangle
inequality we obtain the bound

|hε| ≤ (|D−A(uΔx)|+ |D+A(uΔx)|)
(∫

ΠT

|ϕy| dyds
)

=: h.

It follows by Lemma 3.1 that h is an integrable nonnegative function such that
−h ≤ fε. By Fatou’s lemma we obtain

lim inf
ε↓0

∫
ΠT

fε dxdt ≥
∫
ΠT

lim inf
ε↓0

fε dxdt. �

Note that as ε ↓ 0 the terms in Eε
j concentrate on the domains specified by

u ∈ int(uj , uj+1), u ∈ int(uj−1, uj), or u = uj . In order to analyze this limit we
will need the following elementary lemma:

Lemma 4.8. Let {uj}j∈Z
be some sequence in R and let A : R → R be a strictly

increasing continuously differentiable function. For any u ∈ R there exist sequences{
τ±j

}
j∈Z

,
{
θ±j

}
j∈Z

such that for each j ∈ Z both τ±j and θ±j are in int(uj , uj±1)

and

D±signε(A(uj)−A(u)) = sign′ε(A(τ±j )−A(u))D±A(uj),

D±|A(uj)−A(u)|ε = signε(A(θ±j )−A(u))D±A(uj).

If u is a differentiable function of y, then for each j ∈ Z,

(4.3) sign′ε(A(τ±j )−A(u))A(u)y = −(signε(A(θ±j )−A(u)))y.

Both
{
τ±j

}
j∈Z

and
{
θ±j

}
j∈Z

depend on u and ε.

Proof. The first statement is a direct consequence of the mean value theorem.
Consider (4.3). First note that τ−j = τ+j−1 and θ−j = θ+j−1, so it suffices to consider

τ+j and θ+j . If uj = uj+1, then θj = τj is independent of u and hence of y, so (4.3)
follows by the chain rule. In general,

sign′ε(A(τj)−A(u))A(u)yD+A(uj) = D+signε(A(uj)−A(u))A(u)y

= −D+(|A(uj)−A(u)|ε)y
= −signε(A(θj)−A(u))yD+A(uj).

In the case uj �= uj+1 we have D+A(uj) �= 0 and (4.3) follows. �
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The following result is concerned with the pointwise limit of signε(A(θ±j )−A(u))
as ε ↓ 0. The explicit formula for this limit, which will be used later, shows that the
limit is in fact a Lipschitz continuous function in the case that A(uj) �= A(uj±1).

Lemma 4.9. Let

sg(a,b) (σ) :=

⎧⎪⎨
⎪⎩

|a−σ|−|b−σ|
b−a if a �= b,

sign(a− σ) if a = b, σ �= b,

0 if a = b = σ,

for any real numbers a and b. Under the same assumptions as in Lemma 4.8,

lim
ε↓0

signε(A(θ±j )−A(u)) = −sg(A(uj),A(uj±1)) (A(u)) .

Furthermore, if a �= b, then

sg(a,b) (σ) =

⎧⎪⎨
⎪⎩
−1 if σ ≤ min {a, b},

2
|a−b|

(
σ − 1

2 (b+ a)
)

if σ ∈ int(a, b),

1 if σ ≥ max {a, b}.

Proof. To prove the first statement we consider the case of θ+j . The same argument

applies to θ−j . Recall the definition of θ+j :

signε
(
A(θ+j )−A(u)

)
(A(uj+1)−A(uj)) = |A(uj+1)−A(u)|ε − |A(uj)−A(u)|ε.

If uj+1 = uj , then θ+j = uj for all u and ε, since θ+j ∈ int(uj , uj+1). Thus in this
case

lim
ε↓0

signε
(
A(θ+j )−A(u)

)
=

{
0 if u = uj ,

sign (A(uj)−A(u)) otherwise.

Assume that D+A(uj) �= 0. Then

signε(A(θ+j )−A(u)) =
|A(uj+1)−A(u)|ε − |A(uj)−A(u)|ε

A(uj+1)−A(uj)
,

and the result follows by letting ε ↓ 0. Let us prove the second statement. First
observe that all expressions are symmetric in a and b, so we may assume that a < b.
Under this assumption we have

(b− a)sg(a,b) (σ) = |a− σ| − |b− σ|
= sign (a− σ) (a− σ)− sign (b− σ) (b− σ)

=

{
sign (b− σ) (a− b) if σ �∈ (a, b),

2σ − (b+ a) if σ ∈ (a, b).

Dividing by (b− a) concludes the proof. �
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Lemma 4.10. Let Eε
Δx and ϕ be defined as in Lemma 4.6. For each (x, t) ∈ ΠT ,

lim inf
ε↓0

∫
ΠT

Eε
Δxϕdyds

≥
∫
ΠT

D−

(
D+sign(A(uΔx)−A(u))

×
[
1

2
(A(uΔx) +A(SΔxuΔx))−A(u)

])
ϕdyds

+ lim inf
ε↓0

1

2

∫
ΠT

(
ζε(uΔx, τ

−
Δx, u) + ζε(uΔx, τ

+
Δx, u)

)
(A(u)y)

2ϕdyds,

where

ζε(a, b, c) := sign′ε(A(a)−A(c))− sign′ε(A(b)− A(c)), ∀a, b, c ∈ R.

Proof. We split the proof into two claims.

Claim 1.

Eε
j ≥ 1

2(Δx)2

∫ uj

uj+1

ζε(z, τ+j , u)∂z(A(z)−A(uj+1))
2 dz

+
1

2(Δx)2

∫ uj

uj−1

ζε(z, τ−j , u)∂z(A(z)−A(uj−1))
2 dz

+
1

2

(
ζε(uj , τ

−
j , u) + ζε(uj , τ

+
j , u)

)
(A(u)y)

2.

Proof of Claim 1. Let

T− :=
1

(Δx)2

∫ uj

uj−1

ψ′′
ε (z, u)(A(z)−A(uj−1)) dz

− 1

Δx

∫ uj

uj−1

ψ′′
ε (z, u) dzA(u)y +

1

2
∂yψ

′
ε(u, uj)A(u)y.

We start by rewriting the first term as follows:

1

(Δx)2

∫ uj

uj−1

ψ′′
ε (z, u)(A(z)− A(uj−1)) dz

=
1

2(Δx)2

∫ uj

uj−1

sign′ε(A(z)−A(u))∂z(A(z)−A(uj−1))
2 dz

=
1

2(Δx)2

∫ uj

uj−1

sign′ε(A(τ−j )−A(u))∂z(A(z)−A(uj−1))
2 dz

+
1

2(Δx)2

∫ uj

uj−1

ζε(z, τ−j , u)∂z(A(z)−A(uj−1))
2 dz

=
1

2
sign′ε(A(τ−j )−A(u))(D−A(uj))

2

+
1

2(Δx)2

∫ uj

uj−1

ζε(z, τ−j , u)∂z(A(z)−A(uj−1))
2 dz.
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Concerning the second term in the definition of T−, Lemma 4.8 gives

− 1

Δx

∫ uj

uj−1

ψ′′
ε (z, u) dzA(u)y = −D−signε(A(uj)−A(u))A(u)y

= −sign′ε(A(τ−j )−A(u))D−A(uj)A(u)y.

For the last term we simply add and subtract to obtain

1

2
∂yψ

′
ε(u, uj)A(u)y =

1

2
sign′ε(A(τ−j )−A(u))(A(u)y)

2

+
1

2
ζε(uj , τ

−
j , u)(A(u)y)

2.

Hence,

T− =
1

2
sign′ε(A(τ−j )−A(u))(D−A(uj)−A(u)y)

2

+
1

2(Δx)2

∫ uj

uj−1

ζε(z, τ−j , u)∂z(A(z)−A(uj−1))
2 dz

+
1

2
ζε(uj , τ

−
j , u)(A(u)y)

2.

Define

T+ :=
1

(Δx)2

∫ uj

uj+1

ψ′′
ε (z, u)(A(z)−A(uj+1)) dz

− 1

Δx

∫ uj

uj+1

ψ′′
ε (z, u) dzA(u)y +

1

2
∂yψ

′
ε(u, uj)A(u)y.

Using the same strategy as above we arrive at

T+ =
1

2
sign′ε(A(τ+j )−A(u)) (D+A(uj)− A(u)y)

2

+
1

2(Δx)2

∫ uj

uj+1

ζε(z, τ+j , u)∂z(A(z)−A(uj+1))
2 dz

+
1

2
ζε(uj , τ

+
j , u)(A(u)y)

2.

Note that Eε
j = T− + T+, so Claim 1 follows by removing the nonnegative terms

on the righthand side. �

Claim 2. Suppose that x ∈ Ij . Then

lim inf
ε↓0

1

2(Δx)2

∫
ΠT

[∫ uj

uj−1

ζε(z, τ−j , u)
d

dz
(A(z)−A(uj−1))

2 dz

+

∫ uj

uj+1

ζε(z, τ+j , u)
d

dz
(A(z)−A(uj+1))

2 dz

]
ϕdyds

=

∫
ΠT

D−

(
D+sign(A(uj)−A(u))

[
1

2
(A(uj) +A(uj+1))−A(u)

])
ϕdyds.

(4.4)
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Proof of Claim 2. Let

T ε
1 :=

1

2(Δx)2

∫ uj

uj−1

sign′ε(A(z)−A(u))
d

dz
(A(z)−A(uj−1))

2 dz,

Kε
1 :=

1

2(Δx)2

∫ uj

uj−1

sign′ε(A(τ−j )−A(u))
d

dz
(A(z)−A(uj−1))

2 dz,

T ε
2 :=

1

2(Δx)2

∫ uj

uj+1

sign′ε(A(z)−A(u))
d

dz
(A(z)−A(uj+1))

2 dz,

Kε
2 :=

1

2(Δx)2

∫ uj

uj+1

sign′ε(A(τ+j )−A(u))
d

dz
(A(z)−A(uj+1))

2 dz,

and note that the left-hand side of (4.4) may be written as

lim inf
ε↓0

∫
ΠT

(
(T ε

1 −Kε
1) + (T ε

2 −Kε
2)
)
ϕdyds.

Let us rewrite T ε
1 as follows:

T ε
1 =

1

(Δx)2

∫ uj

uj−1

sign′ε(A(z)−A(u))A′(z)(A(z)−A(uj−1)) dz

=
1

(Δx)2

∫ uj

uj−1

sign′ε(A(z)−A(u))A′(z)(A(u)−A(uj−1)) dz

+
1

(Δx)2

∫ uj

uj−1

sign′ε(A(z)−A(u))A′(z)(A(z)−A(u)) dz

= D−signε(A(uj)−A(u))
(A(u)−A(uj−1))

Δx
+Rε

1,

where

Rε
1 :=

1

Δx2

[
signε(A(z)−A(u))(A(z)−A(u))

∣∣∣∣z=uj

z=uj−1

−
∫ uj

uj−1

d

dz
|A(z)−A(u)|ε dz

]
.

Concerning Kε
1 , we apply Lemma 4.8 to obtain

Kε
1 =

1

2(Δx)2

∫ uj

uj−1

sign′ε(A(τ−j )−A(u))∂z(A(z)−A(uj−1))
2 dz

=
1

2
sign′ε(A(τ−j )−A(u))(D−A(uj))

2 dz

=
1

2
D−signε(A(uj)−A(u))D−A(uj).

It now follows that

T ε
1 −Kε

1 = − 1

Δx
D−signε(A(uj)−A(u))

[
1

2
(A(uj) +A(uj−1))−A(u)

]
+Rε

1.

Performing the same type of computations as above yields

T ε
2 −Kε

2 =
1

Δx
D+signε(A(uj)−A(u))

[
1

2
(A(uj+1) +A(uj))−A(u)

]
+Rε

2,
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where

Rε
2 :=

1

Δx2

[∫ uj+1

uj

d

dz
|A(z)−A(u)|ε dz

− signε(A(z)−A(u))(A(z)−A(u))

∣∣∣∣z=uj+1

z=uj

]
.

Next, observe that

Rε
1 =

1

Δx2

[z=uj

z=uj−1

signε(A(z)−A(u))(A(z)−A(u))− |A(z)−A(u)|ε

]
,

so limε↓0 R
ε
1 = 0. The same considerations apply to Rε

2 so limε↓0 R
ε
2 = 0 also.

Claim 2 follows from an application of the dominated convergence theorem. Finally,
combining Claim 1 and Claim 2 finishes the proof. �

4.1. Estimates. The purpose of this section is to find bounds on the “unwanted”
terms in inequality (4.2) and Lemma 4.10. Throughout this section the notation is
the one given in Lemma 4.6. We let C denote a generic constant. By constant it is
meant that it does not depend on the “small” variables but it might depend on T
and the initial data. For any set A, let �A denote its characteristic function.

For future reference we collect some standard estimates in a lemma.

Lemma 4.11. Let ϕ be defined in Lemma 4.6. Then∣∣∣∣ ∂k

∂xk
ϕ(x, t, y, s)

∣∣∣∣ ≤ ψ(t)

∥∥ρ(k)∥∥
L∞

rk+1
�{|x−y|≤r}(x, y)ρr0(t− s).

Recall that Sσϕ(x, t, y, s) = ϕ(x+ σ, t, y, s). If |σ| ≤ Δx, then∣∣∣∣ ∂k

∂xk
Sσϕ(x, t, y, s)

∣∣∣∣ ≤ ψ(t)

∥∥ρ(k)∥∥
L∞

rk+1
�{|x−y|≤r+Δx}(x, y)ρr0(t− s).

Considering the difference quotient applied to ωr we have

|D+ωr(x− y)| ≤ ‖ρ′‖L∞

r2
�{|x−y|≤r+Δx}(x, y).

Proof. Note that
∂k

∂xk
ωr(x) =

1

rk+1
ρ(k)

(x
r

)
.

Since supp(ρ) ⊂ [−1, 1] we have∣∣∣∣ ∂k

∂xk
ωr(x)

∣∣∣∣ ≤
∥∥ρ(k)∥∥

L∞

rk+1
�{|x|≤r}(x),

which proves the first statement.
Consider the second statement. If |x− y| ≥ r +Δx, then

|x+ σ − y| ≥ |x− y| − |σ| ≥ r +Δx−Δx = r,

so it follows that �{|x+σ−y|≤r}(x, y) ≤ �{|x−y|≤r+Δx}(x, y); this proves the second
statement.

To prove the last statement, recall that

D+ωr(x) =
ωr(x+Δx)− ωr(x)

Δx
.
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If |x| ≥ r+Δx, then ωr(x+Δx) = ωr(x) = 0, so supp(D+(ωr)) ⊂ [−r−Δx, r+Δx].
By the mean value theorem and the fact that ‖ω′

r‖L∞ = ‖ρ′‖L∞ r−2 we get

|ωr(x+Δx)− ωr(x)| ≤
‖ρ′‖L∞

r2
Δx.

The last statement follows from this. �

Estimate 4.1.∣∣∣∣∣
∫∫

Π2
T

sign (uΔx − u) (f(uΔx)− f(u)) (D+ϕ+ ϕy) dX

∣∣∣∣∣ ≤ C
Δx

r

(
1 +

Δx

r

)
.

Proof. Let

β :=

∫∫
Π2

T

sign (uΔx − u) (f(uΔx)− f(u)) (D+ϕ+ ϕy) dX.

First note that

D+ϕ+ ϕy = D+ϕ− ϕx.

We claim that

(4.5) (D+ϕ− ϕx) (x, t, y, s) =
1

Δx

∫ Δx

0

(Δx− σ)ϕxx(x+ σ, t, y, s) dσ.

Hence

β =
1

Δx

∫∫
Π2

T

∫ Δx

0

signε (A(uΔx)−A(u)) (f(uΔx)− f(u)) (Δx− σ)Sσϕxx dσ dX.

We can write

sign (uΔx − u) (f(uΔx)− f(u)) (x, t, y, s)

=
∑
j

sign (uj − u) (f(uj)− f(u)) (t, y, s)︸ ︷︷ ︸
Θj

�{Ij}(x).

Using summation by parts we get

1

Δx

∫
R

∫ Δx

0

sign (uΔx − u) (f(uΔx)− f(u)) (Δx− σ)Sσϕxx dσdx

=
1

Δx

∫ Δx

0

∑
j

Θj

∫
R

�{Ij}(x)(Δx− σ)Sσϕxx dxdσ

=
1

Δx

∫ Δx

0

∑
j

Θj

∫
Ij

ϕxx(x+ σ, t, y, s) dx(Δx− σ) dσ

=

∫ Δx

0

∑
j

Θj

(
D−Sσϕx,j+1/2

)
(Δx− σ) dσ

= −
∑
j

D+Θj

∫ Δx

0

Sσϕx,j+1/2(Δx− σ) dσ,

where Sσϕx,j+1/2 = ϕx(xj+1/2 + σ, t, y, s). By Lemma 4.11 we have

|ϕx(x+ σ, t, y, s)| ≤ C
1

r2
�{|x−y|≤r+Δx}(x, y)ρr0(t− s).
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Hence,∣∣∣∫ Δx

0

Sσϕx,j+1/2(Δx− σ) dσ
∣∣∣ ≤ C

Δx2

r2
�{|xj+1/2−y|≤r+Δx}(y)ρr0(t− s).

Now
|D+Θj | ≤ ‖f‖Lip |D+uj | .

Therefore,∣∣∣ 1

Δx

∫
R

∫ Δx

0

sign (uΔx − u) (f(uΔx)− f(u)) (Δx− σ)ϕσ
xx dσdx

∣∣∣
≤

∑
j

|D+Θj |
∣∣∣∫ Δx

0

Sσϕx,j+1/2(Δx− σ) dσ
∣∣∣

≤ C ‖f‖Lip
∑
j

|D+uj |
Δx2

r2
�{|xj+1/2−y|≤r+Δx}(y)ρr0(t− s).

It follows by the above and Lemma 3.1 that

|β| ≤ CΔx2 r +Δx

r2

∫ T

0

∑
j

|D+uj | dt

= C
r +Δx

r2

∫
ΠT

|uΔx(x+Δx, t)− uΔx(x, t)| dxdt

= CT
1

r

(
1 +

Δx

r

)
Δx

∣∣u0
Δx

∣∣
BV (R)

.

This concludes the proof. �

Estimate 4.2.∣∣∣∣
∫∫

Π2
T

|A(uΔx)−A(u)| (D−D+ϕ+ (D+ +D−)ϕy + ϕyy) dX

∣∣∣∣
≤ C

Δx2

r3

(
1 +

Δx

r

)
.

Proof. Since ϕxx + 2ϕxy + ϕyy = 0 it follows that

D−D+ϕ+ (D+ +D−)ϕy + ϕyy = (D−D+ϕ− ϕxx) + ((D+ +D−)ϕ− 2ϕx)y .

Thus ∫∫
Π2

T

|A(uΔx)−A(u)| (D−D+ϕ+ (D+ +D−)ϕy + ϕyy) dX

=

∫∫
Π2

T

|A(uΔx)−A(u)| (D−D+ϕ− ϕxx) dX

+

∫∫
Π2

T

|A(uΔx)−A(u)| ((D+ +D−)ϕ− 2ϕx)y dX

=: ζ1 + ζ2.

Consider the term ζ1. We use the same strategy as in Estimate 4.1. Writing
μ(σ) = ϕ(x+ σ, t, y, s), a Taylor expansion gives

μ(z)− μ(0) = zμ′(0) +
1

2
z2μ′′(0) +

1

6
z3μ(3)(0)− 1

6

∫ z

0

(σ − z)3μ(4)(σ) dσ.
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Using this, we get

μ(Δx)− 2μ(0) + μ(−Δx)−Δx2μ′′(0)

= −1

6

∫ Δx

0

(σ −Δx)3μ(4)(σ) dσ +
1

6

∫ 0

−Δx

(σ +Δx)3μ(4)(σ) dσ.

It follows that

D+D−ϕ− ϕxx = − 1

6Δx2

∫ Δx

0

(σ −Δx)3
∂4

∂x4
ϕ(x+ σ, t, y, s) dσ

+
1

6Δx2

∫ 0

−Δx

(σ +Δx)3
∂4

∂x4
ϕ(x+ σ, t, y, s) dσ.

Splitting ζ1 according to this equality we get

ζ1 =

∫∫
Π2

T

|A(uΔx)−A(u)| (D−D+ϕ− ϕxx) dX

= − 1

6Δx2

∫∫
Π2

T

∫ Δx

0

|A(uΔx)−A(u)| (σ −Δx)3
∂4

∂x4
ϕ(x+ σ, t, y, s) dσ dX

+
1

6Δx2

∫∫
Π2

T

∫ 0

−Δx

|A(uΔx)−A(u)| (σ +Δx)3
∂4

∂x4
ϕ(x+ σ, t, y, s) dσ dX

=: ζ1,1 + ζ1,2.

We also have that

|A(uΔx)−A(u)| (x, t, y, s) =
∑
j

|A(uj)−A(u)| (t, y, s)︸ ︷︷ ︸
Φj

�{Ij}(x).

Consider ζ1,1,

−
∫ Δx

0

∫
R

|A(uΔx)−A(u)| (σ −Δx)3
∂4

∂x4
Sσϕdxdσ

= −
∑
j

|A(uj)−A(u)| (t, y, s)
∫ Δx

0

(σ −Δx)3
∫
R

�{Ij}(x)
∂4

∂x4
Sσϕdxdσ

= −Δx

∫ Δx

0

(σ −Δx)3
∑
j

ΦjD−ϕ
σ
xxx,j+1/2 dσ

= Δx
∑
j

D+Φj

∫ Δx

0

(σ −Δx)3Sσϕxxx,j+1/2 dσ,

where

Sσϕxxx,j+1/2(t, y, s) =
∂3

∂x3
ϕ(xj+1/2 + σ, t, y, s).



ERROR ESTIMATES FOR CONVECTION-DIFFUSION EQUATIONS 2741

Now we use Lemma 4.11 to estimate this term as follows:

|ζ1,1| =
∣∣∣ 1

6Δx2

∫∫
Π2

T

∫ Δx

0

|A(uΔx)−A(u)| (σ −Δx)3
∂4

∂x4
ϕ(x+ σ, t, y, s) dσ dX

∣∣∣
=

∣∣∣ 1

6Δx

∫
ΠT

∫ T

0

∑
j

D+Φj

∫ Δx

0

(σ −Δx)3Sσϕxxx,j+1/2 dσ dt dyds
∣∣∣

≤ C
r +Δx

Δx2r4

∫
ΠT

|D+A(uΔx)|
(∫ Δx

0

(σ −Δx)3 dσ
)
dxdt

≤ CΔx2 r +Δx

r4
= C

Δx2

r3

(
1 +

Δx

r

)
,

where we have used that |A(uΔx(·, t))|BV (R) is bounded independently of Δx, t, η

by Lemma 3.1. The term ζ1,2 is estimated in a similar way.
Consider ζ2. Again, let μ(σ) = ϕ(x+ σ, t, y, s). Then

(D+ +D−)ϕ− 2ϕx =
1

Δx
[μ(Δx)− μ(−Δx)− 2Δxμ′(0)] .

By a Taylor expansion

μ(z)− μ(0) = zμ′(0) +
1

2
z2μ′′(0) +

1

2

∫ z

0

(σ − z)2μ(3)(σ) dσ.

Writing z = ±Δx and subtracting the corresponding equations we obtain

(D+ +D−)ϕ− 2ϕx =
1

2Δx

∫ Δx

0

(σ −Δx)2
∂3

∂x3
ϕ(x+ σ, t, y, s) dσ

+
1

2Δx

∫ 0

−Δx

(σ +Δx)2
∂3

∂x3
ϕ(x+ σ, t, y, s) dσ.

We may split ζ2 into the two terms

ζ2 =
1

2Δx

∫∫
Π2

T

∫ Δx

0

|A(uΔx)−A(u)| (σ −Δx)2
∂3

∂x3

∂

∂y
ϕ(x+ σ, t, y, s) dσ dX

+
1

2Δx

∫∫
Π2

T

∫ 0

−Δx

|A(uΔx)−A(u)| (σ +Δx)2
∂3

∂x3

∂

∂y
ϕ(x+ σ, t, y, s) dσ dX

=: ζ2,1 + ζ2,2.

Performing integration by parts, ζ2,1 becomes

1

2Δx

∫∫
Π2

T

∫ Δx

0

sign (A(uΔx)−A(u))A(u)y(σ −Δx)2
∂3

∂x3
ϕ(x+ σ, t, y, s) dσ dX.

Thus, by Lemma 4.11,

|ζ2,1| ≤
1

2Δx

∫∫
Π2

T

|A(u)y|
∣∣∣∣∣
∫ Δx

0

(σ −Δx)2
∂3

∂x3
ϕ(x+ σ, t, y, s) dσ

∣∣∣∣∣ dX
≤ TC

r +Δx

r4Δx

(∫ Δx

0

(σ −Δx)2 dσ

)∫
ΠT

|A(u)y| dyds

≤ C
Δx2

r3

(
1 +

Δx

r

)
,

as |A(u(·, s))|BV (R)≤
∣∣A(u0(·))

∣∣
BV (R)

for all s. The same estimate holds for ζ2,2. �
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Estimate 4.3.∣∣∣∣∣
∫∫

Π2
T

(∫ SΔxuΔx

uΔx

sign (z − u)F ′
2(z) dz

)
D+ϕdX

∣∣∣∣∣ ≤ C
Δx

r

(
1 +

Δx

r

)
.

Proof. By definition F ′
2 is bounded. Hence,∣∣∣∫ uj+1

uj

sign (z − u)F ′
2(z) dz

∣∣∣ ≤ ‖F2‖Lip Δx |D+uj | .

Note that |uΔx(·, t)|BV (R) is bounded independently of Δx, t, η by Lemma 3.1, so

we may apply Lemma 4.11 to obtain the result. �

Next, we consider the terms from Lemma 4.10.

Estimate 4.4.∫∫
Π2

T

D−

(
D+sign(A(uj)−A(u))

[
1

2
(A(uj) +A(uj+1))−A(u)

])
ϕdX

≥ −C(1 + r +Δx)
Δx

r2

(
1 +

Δx

r

)3

.

Proof. Let us first show that

(4.6)

∣∣∣∣D+sign(A(uj)−A(u))

[
1

2
(A(uj) +A(uj+1))−A(u)

]∣∣∣∣
≤ ΔxD+sign(A(uj)−A(u))D+(A(uj)).

First note that

D+sign(A(uj)−A(u))

=
2

Δx
sign(A(uj)−A(uj+1))�{A(u)∈int(A(uj),A(uj+1)},

so the left-hand side of (4.6) is zero whenever A(u) /∈ int(A(uj), A(uj+1)). Second,
if c ∈ int(a, b), then it follows that∣∣∣∣12(a+ b)− c

∣∣∣∣ = 1

2
(|b− c|+ |a− c|) ≤ |b− a|.

Since z �→ sign (A(z)−A(u)) is increasing, the right-hand side is positive. This
proves (4.6).

Performing integration by parts we obtain∣∣∣∣
∫∫

Π2
T

D−

(
D+sign(A(uj)−A(u))

[
1

2
(A(uj) +A(uj+1))−A(u)

])
ϕdX

∣∣∣∣
≤

∫∫
Π2

T

∣∣∣∣D+sign(A(uj)−A(u))

[
1

2
(A(uj) +A(uj+1))−A(u)

]∣∣∣∣ |D+ϕ| dX

≤ Δx

∫∫
Π2

T

D+sign(A(uj)−A(u))D+(A(uj)) |D+ϕ| dX.
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Using integration by parts for difference quotients and the Leibniz rule for difference
quotients, we obtain

∫∫
Π2

T

D+signε(A(uΔx)−A(u))D+A(uΔx) |D+ϕ| dX

= −
∫∫

Π2
T

signε(A(uΔx)−A(u))D+A(uΔx)D− |D+ϕ| dX

−
∫∫

Π2
T

signε(A(uΔx)−A(u))D−D+A(uΔx) |D−ϕ| dX

=: ζ1 + ζ2.

To estimate ζ1 we first observe that D− |D+ϕ| ≤ |D+D−ϕ|. Furthermore, when
proving Estimate 4.2, we established that

D+D−ϕ(x, t, y, s)

= ϕxx(x, t, y, s)−
1

6Δx2

∫ Δx

0

(σ −Δx)3
∂4

∂x4
ϕ(x+ σ, t, y, s) dσ

+
1

6Δx2

∫ 0

−Δx

(σ +Δx)3
∂4

∂x4
ϕ(x+ σ, t, y, s) dσ.

By Lemma 4.11,

∣∣∣∫ ±Δx

0

(σ ∓Δx)3
∂4

∂x4
ϕ(x+ σ, t, y, s) dσ

∣∣∣
≤ C

(Δx)4

r5
�{|x−y|≤r+Δx}(x, y)ρr0(t− s).

Using Lemma 4.11 once more, the above implies that

∫
ΠT

|D+D−ϕ| dyds ≤
∫
ΠT

|ϕxx| dyds+ C
Δx2

r4

(
1 +

Δx

r

)

≤ C

(
1

r2
+

Δx2

r4

)(
1 +

Δx

r

)
.

Therefore,

|ζ1| =
∣∣∣∫∫

Π2
T

signε(A(uΔx)−A(u))D+A(uΔx)D+ |D−ϕ| dX
∣∣∣

≤
∫
ΠT

|D+A(uΔx)|
(∫

ΠT

|D+D−ϕ| dyds
)
dxdt

≤ C

(
1

r2
+

Δx2

r4

)(
1 +

Δx

r

)∫
ΠT

|D+A(uΔx)| dxdt.

Recall that |A(uΔx(·, t))|BV (R) is bounded independently of Δx, t, η by Lemma 3.1.
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Concerning ζ2 we have

|ζ2| =
∣∣∣∫∫

Π2
T

signε(A(uΔx)−A(u)) (D−D+A(uΔx)) |D−ϕ| dX
∣∣∣

≤
∫∫

Π2
T

|D−D+A(uΔx)| |D−ϕ| dX

≤ C
r +Δx

r2

∫
ΠT

|D−D+A(uΔx)| dxdt.

Note that it follows from (3.1) and Lemma 3.2 that ‖D−D+A(uΔx(·, t))‖L1(R) is

bounded independently of Δx, t, η. Hence,

Δx

∫∫
Π2

T

D+signε(A(uΔx)−A(u))D+A(uΔx) |D+ϕ| dX

≤ Δx (|ζ1|+ |ζ2|)

≤ C(1 + r +Δx)

(
Δx

r2
+

Δx3

r4

)(
1 +

Δx

r

)

≤ C(1 + r +Δx)
Δx

r2

(
1 +

Δx

r

)3

. �
Estimate 4.5.∫

ΠT

(
lim inf

ε↓0

∫
ΠT

1

2

(
ζε(uΔx, τ

−
Δx, u) + ζε(uΔx, τ

+
Δx, u)

)
(A(u)y)

2ϕdyds

)
dxdt

≥ −C

(
Δx

r0
+

Δx

r
+

Δx

r2

)
.

Proof. Set

Rε
j :=

(
ζε(uj , τ

−
j , u) + ζε(uj , τ

+
j , u)

)
(A(u)y)

2

= (sign′ε(A(uj)−A(u))− sign′ε(A(τ−j )−A(u)))(A(u)y)
2

+ (sign′ε(A(uj)−A(u))− sign′ε(A(τ+j )−A(u)))(A(u)y)
2,

and Rε
Δx(x, t, y, s) = Rε

j(y, t, s) for x ∈ Ij . Note that the term we want to estimate
may be written as

lim inf
ε↓0

∫
ΠT

Rε
Δx(x, t, y, s)ϕ(x, t, y, s) dyds

=
∑
j

lim inf
ε↓0

(∫
ΠT

Rε
j(t, y, s)ϕ(x, t, y, s) dyds

)
�{Ij}(x).

Let us define an entropy function by

∂uΨε(u, uj−1, uj , uj+1)

:= signε(A(θ−j )−A(u))− 2 signε(A(uj)−A(u)) + signε(A(θ+j )−A(u)).

Recall that θ±j = θ±j (u), so the above function is not as explicit as it appears.
However, by Lemma 4.9 we are able to obtain an explicit expression for the limit as
ε → 0. To simplify the notation we write Ψ′

ε,j(u) for ∂uΨε(u, uj−1, uj , uj+1). Let
us also define the entropy flux functions

Ξ′
ε,j(u) = Ψ′

ε,j(u)f
′(u), Φ′

ε,j(u) = Ψ′
ε,j(u)A

′(u).

That is, (Ψε,j ,Ξε,j ,Φε,j) is an entropy-entropy flux triple.
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Multliplying equation (1.1) by Ψ′
ε,j(u) yields

Ψε,j(u)s + Ξε,j(u)y = Φε,j(u)yy − ∂yΨ
′
ε,j(u)A(u)y.

By Lemma 4.8 we see that

∂yΨ
′
ε,j(u)A(u)y =

[
signε(A(θ−j )−A(u))y − 2signε(A(uj)−A(u))y

+ signε(A(θ+j )−A(u))y

]
A(u)y

= −
[
sign′ε(A(τ−j )−A(u))− 2sign′ε(A(uj)−A(u))

+ sign′ε(A(τ+j )−A(u))
]
(A(u)y)

2

= Rε
j .(4.7)

It follows that we can write∫
ΠT

Rε
jϕdyds =

∫
ΠT

Ψε,j(u)ϕs + Ξε,j(u)ϕy +Φε,j(u)ϕyy dyds

=: T ε
1 + T ε

2 + T ε
3 .

(4.8)

Let us consider the three terms separately.
By Lemma 4.9,

lim
ε↓0

Ψε,j(u) = lim
ε↓0

∫ u

uj

Ψ′
ε,j(z) dz =

∫ u

uj

lim
ε↓0

Ψ′
ε,j(z) dz

=

∫ u

uj

sign(A(z)−A(uj))− sgj−1 (A(z)) dz

+

∫ u

uj

sign(A(z)−A(uj))− sgj (A(z)) dz,

where sgj (σ) := sg(A(uj),A(uj+1)) (σ). Again by Lemma 4.9, the mapping

z �→ sign(A(z)−A(uj))− sgj−1 (A(z))

has support in int(uj , uj−1). Similar considerations apply to the second term.
Hence, ∣∣∣∣limε↓0 Ψε,j(u)

∣∣∣∣ ≤
∣∣∣∣∣
∫ uj−1

uj

sign(A(z)−A(uj))− sgj−1 (A(z)) dz

∣∣∣∣∣
+

∣∣∣∣∣
∫ uj+1

uj

sign(A(z)−A(uj))− sgj (A(z)) dz

∣∣∣∣∣
≤ 2 |uj − uj−1|+ 2 |uj+1 − uj | .

By the same type of reasoning we obtain the bound∣∣∣∣limε↓0 Ξε
j(u)

∣∣∣∣ ≤
∣∣∣∣∣
∫ uj−1

uj

[
sign(A(z)−A(uj))− sgj−1 (A(z))

]
f ′(z) dz

∣∣∣∣∣
+

∣∣∣∣∣
∫ uj+1

uj

[
sign(A(z)−A(uj))− sgj (A(z))

]
f ′(z) dz

∣∣∣∣∣
≤ 2 ‖f ′‖L∞ (|uj − uj−1|+ |uj+1 − uj |) .
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Concerning Φε
j we use substitution and the explicit expression given in Lemma 4.9.

This leads to∣∣∣∣limε↓0 Φε
j(u)

∣∣∣∣ =
∣∣∣∣∣
∫ u

uj

(
−sgj−1 (A(z)) + 2 sign(A(z)−A(uj))− sgj (A(z))

)
A′(z) dz

∣∣∣∣∣
=

∣∣∣∣∣
∫ A(u)

A(uj)

−sgj−1 (σ) + 2 sign(σ −A(uj))− sgj (σ) dσ

∣∣∣∣∣
≤

∣∣∣∣∣
∫ A(uj−1)

A(uj)

sign(σ − A(uj))− sgj−1 (σ) dσ

∣∣∣∣∣
+

∣∣∣∣∣
∫ A(uj+1)

A(uj)

sign(σ − A(uj))− sgj (σ) dσ

∣∣∣∣∣
≤ |A(uj)−A(uj−1)|+ |A(uj+1)−A(uj)| .

Let us return to equation (4.8). By the dominated convergence theorem and the
above computations we have∣∣∣∣limε↓0 T ε

1

∣∣∣∣ ≤
∥∥∥∥limε↓0 Ψε

j

∥∥∥∥
L∞

∫
ΠT

|ϕs| dyds ≤ C (|D−uj |+ |D+uj |) ,∣∣∣∣limε↓0 T ε
2

∣∣∣∣ ≤
∥∥∥∥limε↓0 Ξε

j

∥∥∥∥
L∞

∫
ΠT

|ϕy| dyds ≤ C
Δx

r
(|D−uj |+ |D+uj |) ,∣∣∣∣limε↓0 T ε

3

∣∣∣∣ ≤
∥∥∥∥limε↓0 Φε

j

∥∥∥∥
L∞

∫
ΠT

|ϕyy| dyds ≤ C
Δx

r2
(|D−A(uj)|+ |D+A(uj)|) .

Hence, ∫
ΠT

∑
j

lim inf
ε↓0

(∫
ΠT

Rε
j(t, y, s)ϕ(x, t, y, s) dyds

)
�{Ij}(x) dxdt

≥ −C

(
Δx

r0
+

Δx

r

)∫
ΠT

|D−uΔx|+ |D+uΔx| dxdt

− C
Δx

r2

∫
ΠT

|D−A(uΔx)|+ |D+A(uΔx)| dxdt.

The desired estimate now follows from the uniform bounds in Lemma 3.1. �

4.2. Proof of Theorem 4.1. Let us now combine the previous results to conclude
the proof of Theorem 4.1. We begin by stating a rather standard lemma.

Lemma 4.12. Set

κ(t) :=

∫
R

∫
ΠT

|uΔx(x, t)− u(y, s)|ωr(x− y)ρr0(t− s) dydsdx.

Let t ≥ r0, and denote by Lc the Lipschitz constant of t �→ ‖u(·, t)‖L1(R). Then∣∣∣κ(t)− ‖uΔx(·, t)− u(·, t)‖L1(R)

∣∣∣ ≤ |u(·, t)|BV (R) r + Lcr0.
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Proof. By the reverse triangle inequality,∣∣∣κ(t)− ‖uΔx(·, t)− u(·, t)‖L1(R)

∣∣∣
≤
∫
R

∫
ΠT

|u(y, s)− u(x, t)|ωr(x− y)ρr0(t− s) dydsdx

≤
∫ T

0

(∫
R

|u(y, s)− u(t, y)| dy
)
ρr0(t− s) ds

+

∫
R

∫
R

|u(t, y)− u(x, t)|ωr(x− y)dydx

≤ Lcr0 + |u(·, t)|BV (R) r. �

Proof of Theorem 4.1. Our starting point is Lemma 4.6. Let A(σ) = Â(σ) + ησ,

where Â is the original degenerate diffusion function. Let

Ξ =

∫∫
Π2

T

sign (uΔx − u) (f(uΔx)− f(u)) (D+ϕ+ ϕy) dX

+

∫∫
Π2

T

(∫ SΔxuΔx

uΔx

sign (z − u)F ′
2(z) dz

)
D+ϕdX

+

∫∫
Π2

T

|A(uΔx)−A(u)| (D−D+ϕ+ (D+ +D−)ϕy + ϕyy) dX.

By Estimate 4.1, Estimate 4.2, and Estimate 4.3, it follows that

(4.9) |Ξ| ≤ C
Δx

r

(
1 +

Δx

r2

)(
1 +

Δx

r

)
=: E1.

Furthermore, by Lemma 4.7, Lemma 4.10, Estimate 4.4, and Estimate 4.5, it
follows that

(4.10) lim inf
ε↓0

∫∫
Π2

T

Eε
ΔxϕdX ≥ −C(1+ r+Δx)

Δx

r2

(
1 +

Δx

r

)3

−C
Δx

r0
=: −E2.

Applying the estimates (4.9) and (4.10), the inequality (4.2) becomes∫∫
Π2

T

|uΔx − u| ρα(t− τ )ωr(x− y)ρr0(t− s) dX

≤
∫∫

Π2
T

|uΔx − u| ρα(t− ν)ωr(x− y)ρr0(t− s) dX + E1 + E2.

Note that both E1 and E2 are independent of α. Thus, we can send α to zero,
arriving at

κ(τ ) ≤ κ(ν) + E1 + E2,

where κ is defined as in Lemma 4.12.
By Lemma 4.12 it follows that

‖uΔx(·, τ )− u(·, τ )‖L1(R)

≤ ‖uΔx(·, ν)− u(·, ν)‖L1(R) + 2
(
Lcr0 +

∣∣u0
∣∣
BV (R)

r
)
+ E1 + E2.
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Recall that we had to pick ν > r0. Denote by Ld the L1 Lipschitz constant of
t �→ uΔx(·, t). By the triangle inequality

‖uΔx(·, ν)− u(·, ν)‖L1(R)

≤
∥∥uΔx(·, ν)− u0

Δx

∥∥
L1(R)

+
∥∥u0

Δx − u0
∥∥
L1(R)

+
∥∥u0 − u(·, ν)

∥∥
L1(R)

≤ Ldν +
∥∥u0

Δx − u0
∥∥
L1(R)

+ Lcν.

This means that

‖uΔx(·, τ )− u(·, τ )‖L1(R) ≤
∥∥u0

Δx − u0
∥∥
L1(R)

+ (Lc + Ld) ν

+ 2
(
Lcr0 +

∣∣u0
∣∣
BV (R)

r
)
+ E1 + E2.

Choose r3 = r20 = Δx and ν = 2r0. Then there exists a constant C such that

‖uΔx(·, τ )− u(·, τ )‖L1(R) ≤
∥∥u0

Δx − u0
∥∥+ CΔx

1
3 .

Now recall that A(σ) = Â(σ) + ησ and so we need to send η to zero to finish
the proof. If uη is the classical solution of the regularized equation and u is the
entropy solution of the nonregularized equation, then it is well known that uη(·, t) →
u(·, t) in L1(R) as η → 0 (see Section 2). Concerning the scheme, one may prove
continuous dependence in 	1 on η using Gronwall’s inequality. Hence, we can also
send η to zero in the scheme. This finishes the proof of Theorem 4.1. �

5. Implicit difference schemes

In this section we show that the arguments presented in the previous sections
carry through for implicit schemes. Fix a time step Δt > 0. We consider implicit
difference schemes of the form

(5.1) Dt
−u

n
j +D−F (un

j , u
n
j+1) = D−D+A(un

j ) n ≥ 1, j ∈ Z,

where

Dt
−u

n
j =

un
j − un−1

j

Δt
.

Let tn = nΔt and xj = jΔx. We define the grid cells

Inj = [xj−1/2, xj+1/2)× (tn−1, tn] for n ≥ 0 and j ∈ Z.

The piecewise constant approximation is defined for all (x, t) ∈ R× (−Δt, T ] by

(5.2) uΔ(x, t) = un
j for (x, t) ∈ Inj .

The domain is chosen so that Dt
−uΔ is defined for all (x, t) ∈ R × (0, T ). For the

existence of a unique solution un
j to the nonlinear equation (5.1) and the convergence

of uΔ to an entropy solution; see [11].
We now state the main theorem.

Theorem 5.1. Let u be the entropy solution to (1.1), and let uΔ be defined via
un
j by (5.2), where un

j solves (5.1). If u0 satisfies the same assumptions as in
Theorem 4.1, then for all sufficiently small Δx and Δt, and for all n ∈ N such that
tn ∈ [0, T ],

‖uΔ(·, tn)− u(·, tn)‖L1(R) ≤
∥∥u0

Δ − u0
∥∥
L1(R)

+ C
(
Δx1/3 +Δt1/2

)
,

where the constant CT depends on u0, A, f, T , but not on Δx,Δt.
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To prove this theorem we will follow step-by-step the proof of Theorem 4.1 and
present the details whenever there is a significant difference between the two cases.

Thanks to [11, Lemma 2.4], we have the following L1 Lipschitz continuity result:

Lemma 5.1. Let m and n be two nonnegative integers. Then

‖uΔ(·, tn)− uΔ(·, tm)‖L1(R) ≤ Ld |tn − tm| ,

where Ld =
∣∣F (u0

j , u
0
j+1)−D+A(u0

j)
∣∣
BV

.

Next, let us prove an implicit version of Lemma 4.3.

Lemma 5.2. Let un
j be the solution to (5.1). Then for all c ∈ R,

Dt
−ψε(u

n
j , c) +D−Q

c(un
j , u

n
j+1)−D−D+

∣∣A(un
j )−A(c)

∣∣
ε

≤ − 1

(Δx)2

∫ un
j

un
j+1

ψ′′
ε (z, c)(A(z)−A(un

j+1)) dz

− 1

(Δx)2

∫ un
j

un
j−1

ψ′′
ε (z, c)(A(z)−A(un

j−1)) dz,

where Qc(u, v) is defined in Lemma 4.3.

Proof. From (5.1) it follows that

ψ′
ε(u

n
j , c)D

t
−u

n
j + ψ′

ε(u
n
j , c)D−F (un

j , u
n
j+1) = ψ′

ε(u
n
j , c)D−D+A(un

j ).

Apply Lemma 4.2 with g(σ) = σ, a = un
j , and b = un−1

j to obtain

ψ′
ε(u

n
j , c)D

t
−u

n
j = Dt

−ψε(u
n
j , c)−

1

Δt

∫ un−1
j

un
j

ψ′′
ε (z, c)(z − un−1

j ) dz

≥ Dt
−ψε(u

n
j , c).

The remaining part of the proof follows exactly as in the proof of Lemma 4.3. �

Let us define the time shift operator

St
Δtσ(t) = σ(t+Δt),

for any function σ = σ(t).

Lemma 5.3. Suppose A′ > 0. Let uΔ = uΔ(x, t) be defined by (5.2), and let
u = u(y, s) be the classical solution of (1.1). Let ψ(t) := �{[ν,τ)}(t) and define

ϕ(x, t, y, s) = ψ(t)ωr(x− y)ρr0(t− s),
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where ωr, ρr0 , ν, τ are chosen as in Lemma 4.6. Then∫∫
Π2

T

|uΔ − u| δ−Δt(t− ν)ωrρr0 dX

+

∫∫
Π2

T

|uΔ − u|St
Δtψωr(D

t
+ρr0 − ∂tρr0) dX

+Δt

∫∫
Π2

T

|uΔ − u|Dt
+ψωr∂sρr0 dX

+

∫∫
Π2

T

sign (uΔ − u) (f(uΔ)− f(u)) (D+ϕ+ ϕy) dX

+

∫∫
Π2

T

(∫ SΔxuΔ

uΔx

sign (z − u)F ′
2(z) dz

)
D+ϕdX

+

∫∫
Π2

T

|A(uΔ)−A(u)| (D−D+ϕ+ (D+ +D−)ϕy + ϕyy) dX

≥
∫∫

Π2
T

|uΔ − u| δ−Δt(t− τ )ωrρr0 dX + lim inf
ε↓0

∫∫
Π2

T

Eε
ΔϕdX,

where

δ−Δt(t) =
1

Δt
�{[−Δt,0)}(t),

and Eε
Δ(x, t, y, s) = Eε[u](un

j−1, u
n
j , u

n
j+1)(y, s) for (x, t) ∈ Inj .

Proof. As in Lemma 4.5, we obtain by Lemma 5.2 the inequality

Dt
−ψε(u

n
j , u) + ∂sψε(u, u

n
j ) + ∂yqε(u, u

n
j ) +D−Q

u(un
j , u

n
j+1)

− (∂2
y + ∂y(D− +D+) +D−D+)

∣∣A(un
j )−A(u)

∣∣
ε
) ≤ −Eε

j,n,

where Eε
j,n := Eε[u](un

j−1, u
n
j , u

n
j+1) is defined in Lemma 4.5. Let us multiply by ϕ

and integrate over Π2
T . Integration by parts for difference quotients and ordinary

integration by parts gives∫∫
Π2

T

ψε(uΔ, u)D
t
+ϕ+ ψε(u, uΔ)ϕs dX

+

∫∫
Π2

T

qε(u, uΔ)ϕy +Qu(uΔ, SΔxuΔ)D+ϕdX

+

∫∫
Π2

T

|A(uΔ)−A(u)|ε(ϕyy + (D− +D+)ϕy +D−D+ϕ) dX

≥
∫∫

Π2
T

Eε
ΔϕdX.

Consider the first term on the left. Let ε tend to zero as in the proof of Lemma 4.6.
Using the Leibniz rule for difference quotients and adding and subtracting we obtain

Dt
+ϕ = St

ΔtψωrD
t
+ρr0 +Dt

+ψωrρr0 .

Furthermore,

ϕs = −St
Δtψωr∂tρr0 +ΔtDt

+ψωr∂sρr0 .
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Hence,∫∫
Π2

T

|uΔ − u|
(
Dt

+ϕ+ ϕs

)
dX

=

∫∫
Π2

T

|uΔ − u|St
Δtψωr(D

t
+ρr0 − ∂tρr0) dX

+Δt

∫∫
Π2

T

|uΔ − u|Dt
+ψωr∂sρr0 dX +

∫∫
Π2

T

|uΔ − u|Dt
+ψωrρr0 dX.

Finally, we use that

(5.3) Dt
+ψ = δ−Δt(t− ν)− δ−Δt(t− τ ).

The lemma now follows, as in the proof of Lemma 4.6, by letting ε tend to zero. �

Comparing the terms in Lemma 4.6 with the terms in Lemma 5.3 we recognize
all but two terms.

Estimate 5.1.∣∣∣∣∣
∫∫

Π2
T

|u− uΔ|St
Δtψωr(D

t
+ρr0 − ∂tρr0) dX

∣∣∣∣∣ ≤ C
Δt

r0

(
1 +

Δt

r0

)
.

Proof. To show this we use a Taylor expansion:

ρr0(t+Δt− s)− ρr0(t− s)

=

∫ t+Δt

t

∂

∂z
ρr0(z − s) dz

=
∂

∂z

∣∣∣∣
z=t

ρr0(z − s)Δt−
∫ t+Δt

t

∂2

∂z2
ρr0(z − s)(z − (t+Δt)) dz.

It follows that

(5.4) Dt
+ρr0 − ∂tρr0 = − 1

Δt

∫ t+Δt

t

∂2

∂z2
ρr0(z − s)(z − (t+Δt)) dz.

Integration by parts yields

− 1

Δt

∫ t+Δt

t

∫ T

0

|u− uΔ|ε
∂2

∂z2
ρr0(z − s)(z − (t+Δt)) dsdz

=
1

Δt

∫ t+Δt

t

∫ T

0

|u− uΔ|ε
∂

∂s

∂

∂z
ρr0(z − s)(z − (t+Δt)) dsdz

= − 1

Δt

∫ t+Δt

t

∫ T

0

signε(u− uΔ)us
∂

∂z
ρr0(z − s)(z − (t+Δt)) dsdz.

Since

∂

∂z
ρr0(z − s) =

1

r0

∂

∂z
ρ

(
z − s

r0

)
=

1

r20
ρ′

(
z − s

r0

)
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and ρr0 has support in [−r0, r0], it follows that

1

Δt

∣∣∣∣∣
∫ t+Δt

t

∫ T

0

|u(y, s)− uΔ(x, t)|ε
∂2

∂z2
ρr0(z − s)(z − (t+Δt)) dsdz

∣∣∣∣∣
≤ C

r20Δt

∫ T

0

|us(y, s)|
∫ t+Δt

t

�{|z−s|≤r0}|z − (t+Δt)| dzds

≤ C
Δt

r20

∫ T

0

|us|�{|t−s|≤r0+Δt} ds.

Multiply the above inequality by ψ(t)ωr(x − y) and integrate in x, y, t. From the
resulting inequality and (5.4), we arrive at the estimate:∣∣∣∣∣

∫∫
Π2

T

|u− uΔ|εSt
Δtψωr(D

t
+ρr0 − ∂tρr0) dX

∣∣∣∣∣
≤ C

Δt

r20

∫∫
Π2

T

|us|St
Δtψωr�{|t−s|≤r0+Δt} dX ≤ C

Δt

r0

(
1 +

Δt

r0

)
‖us‖L1(ΠT ).

Since ‖us(·, s)‖L1(R) is uniformly bounded on [0, T ], the estimate follows from the
dominated convergence theorem. �

Estimate 5.2. ∣∣∣∣∣Δt

∫∫
Π2

T

|u− uΔ|Dt
+ψωr∂sρr0 dX

∣∣∣∣∣ ≤ C
Δt

r0
.

Proof. Integration by parts yields∣∣∣∣∣
∫∫

Π2
T

|u− uΔ|Dt
+ψωr∂sρr0 dX

∣∣∣∣∣ ≤
∫∫

Π2
T

|us|
∣∣Dt

+ψ
∣∣ωrρr0 dX.

Because of (5.3) and since

‖ρr0‖L∞ ≤ ‖ρ‖L∞

r0
,

it follows that ∫∫
Π2

T

|us|
∣∣Dt

+ψ
∣∣ωrρr0 dX ≤ 2

‖ρ‖L∞

r0
‖us‖L1(ΠT ) . �

Proof of Theorem 5.1. We start out from Lemma 5.3 with A(σ) = Â(σ)+ησ, where

Â is the original degenerate diffusion function. By Estimate 5.1 and Estimate 5.2,

(5.5)

∫∫
Π2

T

|u− uΔ|St
Δtψωr(D

t
+ρr0 − ∂tρr0) dX

+Δt

∫∫
Π2

T

|u− uΔ|Dt
+ψωr∂sρr0 dX ≤ C

Δt

r0

(
1 +

Δt

r0

)
=: E3.

Since all the estimates from Section 4.1 apply, we obtain∫∫
Π2

T

|uΔ − u| δΔt(t− τ )ωr(x− y)ρr0(t− s) dX

≤
∫∫

Π2
T

|uΔx − u| δΔt(t− ν)ωr(x− y)ρr0(t− s) dX + E1 + E2 + E3,
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where E1 and E2 are defined respectively in (4.9) and (4.10).
Let us make the simplifying assumption that ν = tm and τ = tn for some

m,n ∈ N. Then the above inequality is rewritten as

κ(tn) ≤ κ(tm) + E1 + E2 + E3,

where

κ(t) =

∫
R

∫
ΠT

|uΔ(x, t)− u(y, s)|ωr(x− y)ρr0(t− s) dydsdx.

Applying Lemmas 4.12 and 5.1, and following the reasoning given in the semi-
discrete case, we arrive at

‖uΔ(·, tn)− u(·, tn)‖L1(R)

≤
∥∥u0

Δ − u0
∥∥
L1(R)

+ (Lc + Ld) tm + 2
(
Lcr0 +

∣∣u0
∣∣
BV (R)

r
)

+ C(1 + r +Δx)2
(
1 +

Δx

r

)3
Δx

r2
+ C

Δx

r0
+ C

Δt

r0

(
1 +

Δt

r0

)

≤
∥∥u0

Δ − u0
∥∥
L1(R)

+ C

(
Δx

r2
+

Δx+Δt

r0
+ r + r0

)
,

where Ld is the constant in Lemma 5.1 and Lc is the constant from Lemma 4.12.
Minimizing over r and r0, it is straightforward to see that for sufficiently small Δt,
the minimum of the last term is dominated by

C
(
Δx1/3 +Δt1/2

)
.

This proves the theorem. �

6. Explicit difference schemes

In this section we use the techniques developed in the previous section to provide
a similar result concerning the explicit scheme. Fix a time step Δt > 0. We consider
explicit schemes of the form

(6.1) Dt
+u

n
j +D−F (un

j , u
n
j+1) = D−D+A(un

j ) n ≥ 1, j ∈ Z,

where

Dt
+u

n
j =

un+1
j − un

j

Δt
.

The relevant a priori estimates and convergence to an entropy solution is proved in
[12] under the hypothesis

(6.2) 1− Δt

Δx
(F ′

1(z)− F ′
2(z))− 2

Δt

Δx2A
′(w) ≥ 0, ∀(z, w) ∈ R

2.

Let tn = nΔt and xj = jΔx. We define the grid cells

Inj = [xj−1/2, xj+1/2)× [tn, tn+1), for n ≥ 0 and j ∈ Z.

The piecewise constant approximation is defined for all (x, t) ∈ ΠT by

(6.3) uΔ(x, t) = un
j for (x, t) ∈ Inj .
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Theorem 6.1. Let u be the entropy solution to (1.1), and let uΔ be defined by (6.3)
via un

j , where un
j solves (6.1). Suppose Δt and Δx are chosen such that (6.2) and

the strengthened condition Δt ≤ CΔx8/3 hold. If u0 satisfies the same assumptions
as in Theorem 4.1, then for all sufficiently small Δx, and for all n ∈ N such that
tn ∈ [0, T ],

‖uΔ(·, tn)− u(·, tn)‖L1(R) ≤
∥∥u0

Δ − u0
∥∥
L1(R)

+ CΔx1/3,

where the constant CT depends on A, f, u0, T , but not on Δx.

We begin by proving the following lemma.

Lemma 6.1. Let
{
un
j

}
be the solution to (6.1). Suppose that

(6.4) 1− Δt

Δx
(F ′

1(z)− F ′
2(z)) ≥ 0,

for all z ∈ R. Then for all j ∈ Z and n ∈ N,

Dt
+ψε(u

n
j , c) +D−Q

c(un
j , u

n
j+1)−D−D+

∣∣A(un
j )−A(c)

∣∣
ε

≤ − 1

(Δx)2

∫ un
j

un
j−1

ψ′′
ε (z, c)(A(z)−A(un

j−1)) dz

− 1

(Δx)2

∫ un
j

un
j+1

ψ′′
ε (z, c)(A(z)−A(un

j+1)) dz

+

(∫ un+1
j

un
j

ψ′′
ε (z, c) dz

)
D−D+A(un

j ),

where Qc(u, v) is defined by

Qc(u, v) =

∫ u

c

ψ′
ε(z, c)F

′
1(z) dz +

∫ v

c

ψ′
ε(z, c)F

′
2(z) dz, u, v ∈ R.

Proof. We divide the proof into two steps.

Claim 1. Let
{
un
j

}
be a solution to (6.1). Then

Dt
+ψε(u

n
j , c) +D−Q

c(un
j , u

n
j+1)−D−D+

∣∣A(un
j )−A(c)

∣∣
ε

= −Ec(un
j , u

n+1
j , un

j+1, u
n
j−1),

where

Ec(un
j , u

n+1
j , un

j+1, u
n
j−1)

=
1

Δt

∫ un+1
j

un
j

ψ′′
ε (z, c)(z − un+1

j ) dz

+
1

Δx

∫ un
j

un
j−1

ψ′′
ε (z, c)

[
(F1(z)− F1(u

n
j−1)) +

1

Δx
(A(z)−A(un

j−1))

]
dz

+
1

Δx

∫ un
j+1

un
j

ψ′′
ε (z, c)

[
(F2(z)− F2(u

n
j+1))−

1

Δx
(A(z)−A(un

j+1))

]
dz.

Proof of Claim 1. By definition (6.1) of
{
un
j

}
it follows that

ψ′
ε(u

n
j , c)

[
Dt

+u
n
j +D−F (un

j , u
n
j+1)−D−D+A(un

j )
]
= 0.
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Let g(z) = z in Lemma 4.2. It follows that

ψ′
ε(u

n
j , c)D

t
+u

n
j = Dt

+ψε(u
n
j , c) +

1

Δt

∫ un+1
j

un
j

ψ′′
ε (z, c)(z − un+1

j ) dz.

The remaining terms can be treated as in Lemma 4.3. �

Claim 2. Suppose (6.4) holds. Then

1

Δt

∫ un+1
j

un
j

ψ′′
ε (z, c)(z − un+1

j ) dz

+
1

Δx

∫ un
j

un
j−1

ψ′′
ε (z, c)(F1(z)− F1(u

n
j−1)) dz

+
1

Δx

∫ un
j+1

un
j

ψ′′
ε (z, c)(F2(z)− F2(u

n
j+1)) dz

≥ −
∫ un+1

j

un
j

ψ′′
ε (z, c)D−D+A(un

j ) dz.

(6.5)

Proof of Claim 2. Consider the first term on the left-hand side of (6.5). By defini-
tion, un+1

j = un
j −ΔtD−F (un

j , u
n
j+1) + ΔtD−D+A(un

j ), and so

1

Δt

∫ un+1
j

un
j

ψ′′
ε (z, c)(z − un+1

j ) dz

=
1

Δt

∫ un+1
j

un
j

ψ′′
ε (z, c)(z − un

j ) dz +

∫ un+1
j

un
j

ψ′′
ε (z, c)D−F (un

j , u
n
j+1) dz

−
∫ un+1

j

un
j

ψ′′
ε (z, c)D−D+A(un

j ) dz =: T1 + T2 + T3.

Note that T1 is positive.
Let us split T2 according to

D−F (un
j , u

n
j+1) =

1

Δx

(
F1(u

n
j )− F1(u

n
j−1)

)
+

1

Δx

(
F2(u

n
j+1)− F2(u

n
j )

)
,

and thus

T2 =
1

Δx

∫ un+1
j

un
j

ψ′′
ε (z, c)

(
F1(u

n
j )− F1(u

n
j−1)

)
dz

+
1

Δx

∫ un+1
j

un
j

ψ′′
ε (z, c)

(
F2(u

n
j+1)− F2(u

n
j )

)
dz.
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Now, let us split the two other terms appearing in equation (6.5):

S1 :=
1

Δx

∫ un
j

un
j−1

ψ′′
ε (z, c)(F1(z)− F1(u

n
j−1)) dz

=
1

Δx

∫ un+1
j

un
j−1

ψ′′
ε (z, c)(F1(z)− F1(u

n
j−1)) dz

− 1

Δx

∫ un+1
j

un
j

ψ′′
ε (z, c)(F1(z)− F1(u

n
j−1)) dz

and

S2 :=
1

Δx

∫ un
j+1

un
j

ψ′′
ε (z, c)(F2(z)− F2(u

n
j+1)) dz

= − 1

Δx

∫ un+1
j

un
j+1

ψ′′
ε (z, c)(F2(z)− F2(u

n
j+1)) dz

+
1

Δx

∫ un+1
j

un
j

ψ′′
ε (z, c)(F2(z)− F2(u

n
j+1)) dz.

Combining the above expressions we obtain

T2 + S1 + S2 = − 1

Δx

∫ un+1
j

un
j

ψ′′
ε (z, c)(F1(z)− F1(u

n
j )) dz

+
1

Δx

∫ un+1
j

un
j

ψ′′
ε (z, c)(F2(z)− F2(u

n
j )) dz

+
1

Δx

∫ un+1
j

un
j−1

ψ′′
ε (z, c)(F1(z)− F1(u

n
j−1)) dz

− 1

Δx

∫ un+1
j

un
j+1

ψ′′
ε (z, c)(F2(z)− F2(u

n
j+1)) dz.

The two last terms on the right-hand side are positive as F is monotone. Let

H(z) = z − Δt

Δx
(F1(z)− F2(z)) .

Then, by assumption (6.4),

T1 + T2 + S1 + S2 ≥ 1

Δt

∫ un+1
j

un
j

ψ′′
ε (z, c)

[
H(z)−H(un

j )
]
dz ≥ 0.

Adding T3 to both sides proves Claim 2. �
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By Claim 2,

Ec(un
j , u

n+1
j , un

j+1, u
n
j−1)

≥ 1

Δx2

∫ un
j

un
j−1

ψ′′
ε (z, c)(A(z)−A(un

j−1)) dz

+
1

Δx2

∫ un
j

un
j+1

ψ′′
ε (z, c)(A(z)−A(un

j+1)) dz

−
∫ un+1

j

un
j

ψ′′
ε (z, c)D−D+A(un

j ) dz.

Combining this with Claim 1 proves the lemma. �

Lemma 6.2. Suppose A′ > 0, and (6.4) applies. Let uΔ = uΔ(x, t) be defined by
(6.3), and let u = u(y, s) be the classical solution of (1.1). Set ψ(t) := �{[ν,τ)}(t)
and define

ϕ(x, t, y, s) = ψ(t)ωr(x− y)ρr0(t− s),

where ωr, ρr0 , ν, τ are chosen as in Lemma 4.6. Then∫∫
Π2

T

|uΔ − u| δ+Δt(t− ν)ωrρr0 dX

+

∫∫
Π2

T

|uΔ − u|St
−Δtψωr(D

t
−ρr0 − ∂tρr0) dX

+Δt

∫∫
Π2

T

|uΔ − u|Dt
−ψωr∂sρr0 dX

+

∫∫
Π2

T

sign (uΔ − u) (f(uΔ)− f(u)) (D+ϕ+ ϕy) dX

+

∫∫
Π2

T

(∫ SΔxuΔ

uΔx

sign (z − u)F ′
2(z) dz

)
D+ϕdX

+

∫∫
Π2

T

|A(uΔ)−A(u)| (D−D+ϕ+ (D+ +D−)ϕy + ϕyy) dX

≥
∫∫

Π2
T

|uΔ − u| δ+Δt(t− τ )ωrρr0 dX

+ lim inf
ε↓0

∫∫
Π2

T

Eε
ΔϕdX

−Δt

∫∫
Π2

T

Dt
+signε(A(uΔ)−A(u))D−D+A(uΔ)ϕdX,

where

δ+Δt(t) =
1

Δt
�{[0,Δt)}(t),

and Eε
Δ(x, t, y, s) = Eε[u](un

j−1, u
n
j , u

n
j+1)(y, s) for (x, t) ∈ Inj .



2758 K. H. KARLSEN, N. H. RISEBRO, AND E. B. STORRØSTEN

Proof. By Lemma 6.1, we obtain as in Lemma 4.5 the following inequality:

Dt
+ψε(u

n
j , u) + ∂sψε(u, u

n
j ) + ∂yqε(u, u

n
j ) +D−Q

u(un
j , u

n
j+1)

− (∂2
y + ∂y(D− +D+) +D−D+)

∣∣A(un
j )− A(u)

∣∣
ε
)

≤ −Eε
j,n +

(∫ un+1
j

un
j

ψ′′
ε (z, u) dz

)
D−D+A(un

j ),

where Eε
j,n := Eε[u](un

j−1, u
n
j , u

n
j+1) is defined in Lemma 4.5. Note that

∫ un+1
j

un
j

ψ′′
ε (z, u) dz = ΔtDt

+signε(A(un
j )−A(u)).

Integration by parts for difference quotients and ordinary integration by parts gives∫∫
Π2

T

ψε(uΔ, u)D
t
−ϕ+ ψε(u, uΔ)ϕs dX

+

∫∫
Π2

T

qε(u, uΔ)ϕy +Qu(uΔ, SΔxuΔ)D+ϕdX

+

∫∫
Π2

T

|A(uΔ)− A(u)|ε(ϕyy + (D− +D+)ϕy +D−D+ϕ) dX

≥
∫∫

Π2
T

Eε
ΔϕdX −Δt

∫∫
Π2

T

Dt
+signε(A(uΔt)−A(u))D−D+A(uΔ)ϕdX.

Consider the first term on the left-hand side. Let ε tend to zero as in the proof of
Lemma 4.6. Using the Leibniz rule for difference quotients we obtain

Dt
−ϕ = St

−ΔtψωrD
t
−ρr0 +Dt

−ψωrρr0 .

Recall that ∂sρr0 = −∂tρr0 , so adding and subtracting gives

ϕs = −St
−Δtψωr∂tρr0 +ΔtDt

−ψωr∂sρr0 .

Hence,∫∫
Π2

T

|uΔ − u|
(
Dt

−ϕ+ ϕs

)
dX

=

∫∫
Π2

T

|uΔ − u|St
−Δtψωr(D

t
−ρr0 − ∂tρr0) dX

+Δt

∫∫
Π2

T

|uΔ − u|Dt
−ψωr∂sρr0 dX +

∫∫
Π2

T

|uΔ − u|Dt
−ψωrρr0 dX.

Finally, we use that

(6.6) Dt
−ψ = δ+Δt(t− ν)− δ+Δt(t− τ ).

Concerning the second term on the left-hand side, we apply (3.8). The lemma now
follows by sending ε to zero, as in the proof of Lemma 4.6. �

As seen by comparing Lemmas 6.2 and 5.3, there is one new term. To estimate
this term we will use a result from [12, p. 1853].
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Lemma 6.3. Let un
j be the solution to (6.1). Suppose the CFL condition (6.2) is

satisfied. Then there exists a constant L such that

Δx
∑
j

∣∣D+A(um
j )−D+A(un

j )
∣∣ ≤ L

√
(m− n)Δt, for all m ≥ n.

Estimate 6.1. Suppose (6.2) is satisfied. Then∣∣∣∣∣Δt

∫∫
Π2

T

Dt
+signε(A(uΔ)−A(u))D−D+A(uΔ)ϕdX

∣∣∣∣∣
≤ C

√
Δt

Δx
+ C

Δt

r0

(
1 +

Δt

r0

)
+ CΔt.

Proof. Integration by parts for difference quotients gives

Δt

∫∫
Π2

T

Dt
+signε(A(uΔ)−A(u))D−D+A(uΔ)ϕdX

= −Δt

∫∫
Π2

T

signε(A(uΔ)−A(u))St
−ΔtD−D+A(uΔ)D

t
−ϕdX

−Δt

∫∫
Π2

T

signε(A(uΔ)−A(u))Dt
−D−D+A(uΔ)ϕdX =: T1 + T2,

where we have used that

Dt
−(D−D+A(uΔ)ϕ) = St

−ΔtD−D+A(uΔ)D
t
−ϕ+Dt

−D−D+A(uΔ)ϕ.

Let us consider T1 first. By the Leibniz rule for difference quotients,

T1 = Δt

∫∫
Π2

T

signε(A(uΔ)−A(u))St
−ΔtD−D+A(uΔ)S

t
−ΔtψωrD

t
−ρr0 dX

+Δt

∫∫
Π2

T

signε(A(uΔ)−A(u))St
−ΔtD−D+A(uΔ)D

t
−ψωrρr0 dX

=: T1,1 + T1,2.

Using equation (6.6),

|T1,2| ≤ Δt

∫
ΠT

∣∣St
−ΔtD−D+A(uΔ)

∣∣ (∣∣δ+Δt(t− ν)
∣∣+ ∣∣δ+Δt(t− τ )

∣∣) dxdt ≤ CΔt,

as ‖D−D+A(uΔ(·, t))‖L1(R) is bounded independent of Δ and t ([13, Lemma 3.4]).

Now, as in Lemma 4.11,

∣∣Dt
−ρr0

∣∣ ≤ ‖ρ′‖L∞

r20
�{|t−s|≤r0+Δt}(t, s)

and, therefore,

|T1,1| ≤ CΔt
r0 +Δt

r20

∫
ΠT

∣∣St
−ΔtD−D+A(uΔ)

∣∣ dxdt ≤ C
Δt

r0

(
1 +

Δt

r0

)
.
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Next, we consider T2. By Lemma 6.3,

|T2| ≤ Δt

∫ τ

ν

∫
R

∣∣Dt
−D−D+A(uΔ)

∣∣ dxdt
≤ 2

Δt

Δx

∫ τ

ν

∥∥Dt
−D+A(uΔ(·, t))

∥∥
L1(R)

dt

≤ 2TL

√
Δt

Δx
. �

Proof of Theorem 6.1. We start out from Lemma 6.2 with A(σ) = Â(σ)+ησ, where

Â is the original degenerate diffusion function. By Estimate 6.1,∣∣∣∣∣Δt

∫∫
Π2

T

Dt
+signε(A(uΔ)−A(u))D−D+A(uΔ)ϕdX

∣∣∣∣∣
≤ C

√
Δt

Δx
+ C

Δt

r0

(
1 +

Δt

r0

)
+ CΔt =: E4.

Since all the estimates from Section 4.1 apply, we obtain∫∫
Π2

T

|uΔ − u| δΔt(t− τ )ωr(x− y)ρr0(t− s) dX

≤
∫∫

Π2
T

|uΔx − u| δΔt(t− ν)ωr(x− y)ρr0(t− s) dX

+ E1 + E2 + E3 + E4,

where E1, E2, E3 are defined respectively in (4.9), (4.10), and (5.5). Let us make
the assumption that ν = tm and τ = tn for some m,n ∈ N. Then the above
inequality takes the form

κ(tn) ≤ κ(tm) + E1 + E2 + E3 + E4,

where

κ(t) :=

∫
R

∫
ΠT

|uΔ(x, t)− u(y, s)|ωr(x− y)ρr0(t− s) dydsdx.

Applying Lemmas 4.12 and 5.1, and following the reasoning given in the semi-
discrete case, we deduce

‖uΔ(·, tn)− u(·, tn)‖L1(R)

≤
∥∥u0

Δ − u0
∥∥
L1(R)

+ (Lc + Ld) tm

+ 2
(
Lcr0 +

∣∣u0
∣∣
BV (R)

r
)
+ C(1 + r +Δx)2

(
1 +

Δx

r

)3
Δx

r2

+ C
Δx

r0
+ C

Δt

r0

(
1 + r0 +

Δt

r0

)
+ C

√
Δt

Δx

≤
∥∥u0

Δ − u0
∥∥
L1(R)

+ C

(
Δx

r2
+

Δx+Δt

r0
+

√
Δt

Δx
+ r + r0

)
,

where Ld is the constant in Lemma 5.1 and Lc is the constant from Lemma 4.12.
Let r = r0,Δx = r3 and Δt = r8. It follows that

‖uΔ(·, tn)− u(·, tn)‖L1(R) ≤
∥∥u0

Δ − u0
∥∥
L1(R)

+ CΔx1/3.

Finally, we send η → 0 to conclude the proof of the theorem. �
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7. Concluding remarks

The added complexity of convection-diffusion equations versus conservation laws
[22] arises as a result of the need to work with an explicit form of the parabolic
dissipation term. This is reflected in the fact that the rate of convergence is lowered
to 1/3 (from 1/2 for conservation laws) due to Estimate 4.4 and Estimate 4.5.
The optimality of the 1

3 rate is an open problem. Concerning Section 6 (explicit
schemes), one may wonder if it is possible to remove the strengthened CFL condition

Δt ∼ Δx8/3 (the usual one demands Δt ∼ Δx2). The difficulty is that the parabolic
dissipation term is needed to balance the temporal error contribution as well as to
carry out the doubling-of-the-variables argument, and this forces us to impose a
stronger relation between Δt and Δx in order to appropriately control the temporal

error contribution. We do not know if the condition Δt ∼ Δx8/3 is genuinely
needed or is simply an artifact of our method of proof. Finally, we are currently
investigating the multidimensional case. For the semi-discrete scheme the main
challenge seems to be the adaptation of Estimate 4.5, or more precisely to produce
a multidimensional analogue of (4.7). As an additional difficulty, Lemma 6.3 is not
available in several space dimensions; see [12]. At the moment our multidimensional
convergence rates are lower than in the one-dimensional case.
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