Smooth function extension based on high dimensional unstructured data
HTML articles powered by AMS MathViewer
- by Charles K. Chui and H. N. Mhaskar;
- Math. Comp. 83 (2014), 2865-2891
- DOI: https://doi.org/10.1090/S0025-5718-2014-02819-6
- Published electronically: June 18, 2014
- PDF | Request permission
Abstract:
Many applications, including the image search engine, image inpainting, hyperspectral image dimensionality reduction, pattern recognition, and time series prediction, can be facilitated by considering the given discrete data–set as a point-cloud ${\mathcal P}$ in some high dimensional Euclidean space ${\mathbb R}^{s}$. Then the problem is to extend a desirable objective function $f$ from a certain relatively smaller training subset $\mathcal {C}\subset {\mathcal P}$ to some continuous manifold ${\mathbb X}\subset {\mathbb R}^{s}$ that contains ${\mathcal P}$, at least approximately. More precisely, when the point cloud ${\mathcal P}$ of the given data–set is modeled in the abstract by some unknown compact manifold embedded in the ambient Euclidean space ${\mathbb R}^{s}$, the extension problem can be considered as the interpolation problem of seeking the objective function on the manifold ${\mathbb X}$ that agrees with $f$ on $\mathcal {C}$ under certain desirable specifications. For instance, by considering groups of cardinality $s$ of data values as points in a point-cloud in ${\mathbb R}^{s}$, such groups that are far apart in the original spatial data domain in ${\mathbb R}^{1}$ or ${\mathbb R}^{2}$, but have similar geometric properties, can be arranged to be close neighbors on the manifold. The objective of this paper is to incorporate the consideration of data geometry and spatial approximation, with immediate implications to the various directions of application areas. Our main result is a point-cloud interpolation formula that provides a near-optimal degree of approximation to the target objective function on the unknown manifold.References
- M. Belkin and P. Niyogi, Semi-supervised learning on Riemannian manifolds, Machine Learning Journal 56 (2004), 209–239.
- Mikhail Belkin and Partha Niyogi, Towards a theoretical foundation for Laplacian-based manifold methods, J. Comput. System Sci. 74 (2008), no. 8, 1289–1308. MR 2460286, DOI 10.1016/j.jcss.2007.08.006
- M. Belkin, P. Niyogi, Convergence of Laplacian Eigenmaps, Manuscript (http://www. cse.ohio-state.edu/ mbelkin/papers/CLEM_08.pdf).
- Charles K. Chui and Harvey Diamond, A general framework for local interpolation, Numer. Math. 58 (1991), no. 6, 569–581. MR 1083520, DOI 10.1007/BF01385640
- Charles K. Chui and H. N. Mhaskar, MRA contextual-recovery extension of smooth functions on manifolds, Appl. Comput. Harmon. Anal. 28 (2010), no. 1, 104–113. MR 2563262, DOI 10.1016/j.acha.2009.04.004
- Charles K. Chui and Jianzhong Wang, PDE models associated with the bilateral filter, Adv. Comput. Math. 31 (2009), no. 1-3, 131–156. MR 2511577, DOI 10.1007/s10444-008-9095-2
- C.K. Chui and J.Z. Wang, Dimensionality Reduction of Hyper-spectral Imagery Data for Feature Classification, in “Handbook of Geomathematics”, pp. 1005–1049, Freeden, W., Nashed, Z., and Sonar, T. (eds.), Springer, 2010.
- Charles K. Chui and Jianzhong Wang, Randomized anisotropic transform for nonlinear dimensionality reduction, GEM Int. J. Geomath. 1 (2010), no. 1, 23–50. MR 2747641, DOI 10.1007/s13137-010-0004-8
- Ronald R. Coifman and Stéphane Lafon, Diffusion maps, Appl. Comput. Harmon. Anal. 21 (2006), no. 1, 5–30. MR 2238665, DOI 10.1016/j.acha.2006.04.006
- Ronald R. Coifman and Mauro Maggioni, Diffusion wavelets, Appl. Comput. Harmon. Anal. 21 (2006), no. 1, 53–94. MR 2238667, DOI 10.1016/j.acha.2006.04.004
- W. Czaja and M. Ehler, Schrödinger eigenmaps for the analysis of bio–medical data, IEEE Trans. Pattern Anal. Mach. Intelligence, DOI:10.1109/TPAMI.2012.270.
- E. B. Davies, $L^p$ spectral theory of higher-order elliptic differential operators, Bull. London Math. Soc. 29 (1997), no. 5, 513–546. MR 1458713, DOI 10.1112/S002460939700324X
- Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635, DOI 10.1007/978-3-662-02888-9
- M. Ehler, The multiresolution structure of pairs of dual wavelet frames for a pair of Sobolev spaces, Jaen J. Approx., 2 (2) (2010), 193–214.
- M. Ehler, F. Filbir, and H. N. Mhaskar, Locally learning biomedical data using diffusion frames, J. Comput. Biol. 19 (2012), no. 11, 1251–1264. MR 2994881, DOI 10.1089/cmb.2012.0187
- Michael Elad, On the origin of the bilateral filter and ways to improve it, IEEE Trans. Image Process. 11 (2002), no. 10, 1141–1151. MR 1966043, DOI 10.1109/TIP.2002.801126
- Charles Fefferman, Whitney’s extension problem for $C^m$, Ann. of Math. (2) 164 (2006), no. 1, 313–359. MR 2233850, DOI 10.4007/annals.2006.164.313
- Charles Fefferman, The structure of linear extension operators for $C^m$, Rev. Mat. Iberoam. 23 (2007), no. 1, 269–280. MR 2351135, DOI 10.4171/RMI/495
- Charles Fefferman and Bo’az Klartag, Fitting a $C^m$-smooth function to data. I, Ann. of Math. (2) 169 (2009), no. 1, 315–346. MR 2480607, DOI 10.4007/annals.2009.169.315
- Charles Fefferman and Bo’az Klartag, Fitting a $C^m$-smooth function to data. II, Rev. Mat. Iberoam. 25 (2009), no. 1, 49–273. MR 2514338, DOI 10.4171/RMI/569
- Charles Fefferman, Fitting a $C^m$-smooth function to data. III, Ann. of Math. (2) 170 (2009), no. 1, 427–441. MR 2521121, DOI 10.4007/annals.2009.170.427
- F. Filbir and H. N. Mhaskar, A quadrature formula for diffusion polynomials corresponding to a generalized heat kernel, J. Fourier Anal. Appl. 16 (2010), no. 5, 629–657. MR 2673702, DOI 10.1007/s00041-010-9119-4
- F. Filbir and H. N. Mhaskar, Marcinkiewicz-Zygmund measures on manifolds, J. Complexity 27 (2011), no. 6, 568–596. MR 2846706, DOI 10.1016/j.jco.2011.03.002
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR 1417720
- Alexander Grigor′yan, Estimates of heat kernels on Riemannian manifolds, Spectral theory and geometry (Edinburgh, 1998) London Math. Soc. Lecture Note Ser., vol. 273, Cambridge Univ. Press, Cambridge, 1999, pp. 140–225. MR 1736868, DOI 10.1017/CBO9780511566165.008
- Alexander Grigor′yan, Heat kernels on weighted manifolds and applications, The ubiquitous heat kernel, Contemp. Math., vol. 398, Amer. Math. Soc., Providence, RI, 2006, pp. 93–191. MR 2218016, DOI 10.1090/conm/398/07486
- Alexander Grigor’yan, Heat kernels on metric measure spaces with regular volume growth, Handbook of geometric analysis, No. 2, Adv. Lect. Math. (ALM), vol. 13, Int. Press, Somerville, MA, 2010, pp. 1–60. MR 2743439
- Yu. A. Kordyukov, $L^p$-theory of elliptic differential operators on manifolds of bounded geometry, Acta Appl. Math. 23 (1991), no. 3, 223–260. MR 1120831, DOI 10.1007/BF00047137
- M. Maggioni and H. N. Mhaskar, Diffusion polynomial frames on metric measure spaces, Appl. Comput. Harmon. Anal. 24 (2008), no. 3, 329–353. MR 2407008, DOI 10.1016/j.acha.2007.07.001
- H. N. Mhaskar, Polynomial operators and local smoothness classes on the unit interval, J. Approx. Theory 131 (2004), no. 2, 243–267. MR 2106540, DOI 10.1016/j.jat.2004.10.002
- H. N. Mhaskar, Eignets for function approximation on manifolds, Appl. Comput. Harmon. Anal. 29 (2010), no. 1, 63–87. MR 2647012, DOI 10.1016/j.acha.2009.08.006
- H.N. Mhaskar, A generalized diffusion frame for parsimonious representation of functions on data defined manifolds, Neural Networks 24 (2011), 345–359.
- Naoki Saito, Data analysis and representation on a general domain using eigenfunctions of Laplacian, Appl. Comput. Harmon. Anal. 25 (2008), no. 1, 68–97. MR 2419705, DOI 10.1016/j.acha.2007.09.005
- J.B. Tenenbaum, V. de Silva, and J.C. Langford, A global geometric framwork for nonlinear dimensionality reduction, Science 290 (2000), 2319–2323.
- C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in “Proc. 6$^\textrm {}$th Int. Conf. Computer Vision”, New Delhi, India, 1998, pp. 839–846.
Bibliographic Information
- Charles K. Chui
- Affiliation: Department of Statistics, Stanford University, Stanford, California 94305
- Email: ckchui@stanford.edu
- H. N. Mhaskar
- Affiliation: Department of Mathematics, California Institute of Technology, Pasadena, California 91125 — and — Institute of Mathematical Sciences, Claremont Graduate University, Claremont, California 91711
- Email: hmhaska@gmail.com
- Received by editor(s): February 17, 2012
- Received by editor(s) in revised form: February 23, 2013
- Published electronically: June 18, 2014
- Additional Notes: The first author’s research was supported by ARO Grants # W911NF-07-1-0525 and # W911NF-11-1-0426.
The second author’s research was supported, in part, by grant DMS-0908037 from the National Science Foundation and grant W911NF-09-1-0465 from the U.S. Army Research Office. - © Copyright 2014 American Mathematical Society
- Journal: Math. Comp. 83 (2014), 2865-2891
- MSC (2010): Primary 41A25, 42C15, 68Q32
- DOI: https://doi.org/10.1090/S0025-5718-2014-02819-6
- MathSciNet review: 3246813