Computing the torsion of the $p$-ramified module of a number field
Authors:
Frédéric Pitoun and Firmin Varescon
Journal:
Math. Comp. 84 (2015), 371-383
MSC (2010):
Primary 11R23, 11R37, 11Y40
DOI:
https://doi.org/10.1090/S0025-5718-2014-02838-X
Published electronically:
June 24, 2014
MathSciNet review:
3266966
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We fix a prime number $p$ and a number field $K$, and denote by $M$ the maximal abelian $p$-extension of $K$ unramified outside $p$. Our aim is to study the $\mathbb {Z}_p$-module $\mathfrak {X}=\mathrm {Gal}(M/K)$ and to give a method to effectively compute its structure as a $\mathbb {Z}_p$-module. We also give numerical results, for real quadratic fields, cubic fields and quintic fields, together with their interpretations via Cohen-Lenstra heuristics.
- K. Belabas, A fast algorithm to compute cubic fields, Math. Comp. 66 (1997), no. 219, 1213–1237. MR 1415795, DOI https://doi.org/10.1090/S0025-5718-97-00846-6
- H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, DOI https://doi.org/10.1007/BFb0099440
- Christophe Delaunay, Heuristics on class groups and on Tate-Shafarevich groups: the magic of the Cohen-Lenstra heuristics, Ranks of elliptic curves and random matrix theory, London Math. Soc. Lecture Note Ser., vol. 341, Cambridge Univ. Press, Cambridge, 2007, pp. 323–340. MR 2322355, DOI https://doi.org/10.1017/CBO9780511735158.021
- Georges Gras, Groupe de Galois de la $p$-extension abélienne $p$-ramifiée maximale d’un corps de nombres, J. Reine Angew. Math. 333 (1982), 86–132 (French). MR 660786, DOI https://doi.org/10.1515/crll.1982.333.86
- Georges Gras, Class field theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003. From theory to practice; Translated from the French manuscript by Henri Cohen. MR 1941965
- P. Hall, A partition formula connected with Abelian groups, Comment. Math. Helv. 11 (1938), no. 1, 126–129. MR 1509594, DOI https://doi.org/10.1007/BF01199694
- The PARI Group – Bordeaux, Pari/gp, version 2.6.0, 2013, available from http://pari.math.u-bordeaux.fr/.
- Jean-Pierre Serre, Corps locaux, Hermann, Paris, 1968 (French). Deuxième édition; Publications de l’Université de Nancago, No. VIII. MR 0354618
Retrieve articles in Mathematics of Computation with MSC (2010): 11R23, 11R37, 11Y40
Retrieve articles in all journals with MSC (2010): 11R23, 11R37, 11Y40
Additional Information
Frédéric Pitoun
Affiliation:
27 Avenue du 8 mai 1945, 11400 Castelnaudary, France
Email:
frederic.pitoun@free.fr
Firmin Varescon
Affiliation:
Laboratoire de mathématiques de Besançon, CNRS UMR 6623, Université de Franche Comté, 16 Route de Gray, 25020 Besançon Cédex, France
Email:
firmin.varescon@univ-fcomte.fr
Received by editor(s):
April 10, 2012
Received by editor(s) in revised form:
February 13, 2013, April 4, 2013, and May 3, 2013
Published electronically:
June 24, 2014
Article copyright:
© Copyright 2014
American Mathematical Society