On root posets for noncrystallographic root systems
Authors:
Michael Cuntz and Christian Stump
Journal:
Math. Comp. 84 (2015), 485-503
MSC (2010):
Primary 20F55
DOI:
https://doi.org/10.1090/S0025-5718-2014-02841-X
Published electronically:
May 28, 2014
MathSciNet review:
3266972
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We discuss properties of root posets for finite crystallographic root systems, and show that these properties uniquely determine root posets for the noncrystallographic dihedral types and type $H_3$, while proving that there does not exist a poset satisfying all of the properties in type $H_4$. We do this by exhaustive computer searches for posets having these properties. We further give a realization of the poset of type $H_3$ as restricted roots of type $D_6$, and conjecture a Hilbert polynomial for the $q,t$-Catalan numbers for type $H_4$.
- D. Armstrong, Braid groups, clusters and free probability: an outline from the AIM workshop, available at http://www.math.miami.edu/~armstrong/research.html, 2005.
- Drew Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159. MR 2561274, DOI https://doi.org/10.1090/S0065-9266-09-00565-1
- Drew Armstrong, Christian Stump, and Hugh Thomas, A uniform bijection between nonnesting and noncrossing partitions, Trans. Amer. Math. Soc. 365 (2013), no. 8, 4121–4151. MR 3055691, DOI https://doi.org/10.1090/S0002-9947-2013-05729-7
- Christos A. Athanasiadis, On a refinement of the generalized Catalan numbers for Weyl groups, Trans. Amer. Math. Soc. 357 (2005), no. 1, 179–196. MR 2098091, DOI https://doi.org/10.1090/S0002-9947-04-03548-2
- Frédéric Chapoton, Enumerative properties of generalized associahedra, Sém. Lothar. Combin. 51 (2004/05), Art. B51b, 16. MR 2080386
- F. Chapoton, Sur le nombre de réflexions pleines dans les groupes de Coxeter finis, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 4, 585–596 (French, with English and French summaries). MR 2300616
- Yu Chen and Cathy Kriloff, Dominant regions in noncrystallographic hyperplane arrangements, J. Combin. Theory Ser. A 114 (2007), no. 5, 789–808. MR 2333133, DOI https://doi.org/10.1016/j.jcta.2006.09.001
- A. M. Garsia and M. Haiman, A remarkable $q,t$-Catalan sequence and $q$-Lagrange inversion, J. Algebraic Combin. 5 (1996), no. 3, 191–244. MR 1394305, DOI https://doi.org/10.1023/A%3A1022476211638
- James Haglund, The $q$,$t$-Catalan numbers and the space of diagonal harmonics, University Lecture Series, vol. 41, American Mathematical Society, Providence, RI, 2008. With an appendix on the combinatorics of Macdonald polynomials. MR 2371044
- Mark Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), no. 2, 371–407. MR 1918676, DOI https://doi.org/10.1007/s002220200219
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460
- Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219
- Dmitri I. Panyushev, On orbits of antichains of positive roots, European J. Combin. 30 (2009), no. 2, 586–594. MR 2489252, DOI https://doi.org/10.1016/j.ejc.2008.03.009
- Victor Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997), no. 1-3, 195–222. MR 1483446, DOI https://doi.org/10.1016/S0012-365X%2896%2900365-2
- Christian Stump, $q$, $t$-Fuß-Catalan numbers for finite reflection groups, J. Algebraic Combin. 32 (2010), no. 1, 67–97. MR 2657714, DOI https://doi.org/10.1007/s10801-009-0205-0
- M. Thiel, $H=F$, available at arXiv:1305.0389, 2013.
Retrieve articles in Mathematics of Computation with MSC (2010): 20F55
Retrieve articles in all journals with MSC (2010): 20F55
Additional Information
Michael Cuntz
Affiliation:
Fachbereich Mathematik, Universität Kaiserslautern, Germany
Address at time of publication:
Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
Email:
cuntz@math.uni-hannover.de
Christian Stump
Affiliation:
Institut für Algebra, Zahlentheorie und Diskrete Mathematik, Fakultät für Mathematik und Physik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
Address at time of publication:
Institut für Mathematik, Freie Universität Berlin, Germany
MR Author ID:
904921
ORCID:
0000-0002-9271-8436
Email:
christian.stump@fu-berlin.de
Received by editor(s):
December 5, 2012
Received by editor(s) in revised form:
April 11, 2013, and May 10, 2013
Published electronically:
May 28, 2014
Additional Notes:
Most of the results of this article were achieved at the Leibniz Universität Hannover in summer 2012.
Article copyright:
© Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.