Computing the residue of the Dedekind zeta function
HTML articles powered by AMS MathViewer
- by Karim Belabas and Eduardo Friedman;
- Math. Comp. 84 (2015), 357-369
- DOI: https://doi.org/10.1090/S0025-5718-2014-02843-3
- Published electronically: May 7, 2014
- PDF | Request permission
Abstract:
Assuming the Generalized Riemann Hypothesis, Bach has shown that one can calculate the residue of the Dedekind zeta function of a number field $K$ by a clever use of the splitting of primes $p<X$, with an error asymptotically bounded by $8.33\log \Delta _K/(\sqrt {X}\log X)$, where $\Delta _K$ is the absolute value of the discriminant of $K$. Guided by Weil’s explicit formula and still assuming GRH, we make a different use of the splitting of primes and thereby improve Bach’s constant to $2.33$. This results in substantial speeding of one part of Buchmann’s class group algorithm.References
- Eric Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), no. 191, 355–380. MR 1023756, DOI 10.1090/S0025-5718-1990-1023756-8
- Hermann Kober, Transformationen von algebraischem Typ, Ann. of Math. (2) 40 (1939), 549–559 (German). MR 96, DOI 10.2307/1968939
- Karim Belabas, Francisco Diaz y Diaz, and Eduardo Friedman, Small generators of the ideal class group, Math. Comp. 77 (2008), no. 262, 1185–1197. MR 2373197, DOI 10.1090/S0025-5718-07-02003-0
- Johannes Buchmann, A subexponential algorithm for the determination of class groups and regulators of algebraic number fields, Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhäuser Boston, Boston, MA, 1990, pp. 27–41. MR 1104698
- Harold Davenport, Multiplicative number theory, 2nd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York-Berlin, 1980. Revised by Hugh L. Montgomery. MR 606931, DOI 10.1007/978-1-4757-5927-3
- Edmund Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Chelsea Publishing Co., New York, 1949 (German). MR 31002
- Jacques Martinet, Petits discriminants des corps de nombres, Number theory days, 1980 (Exeter, 1980) NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., vol. 91, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 151–193 (French). MR 697261
- PARI/GP, version 2.6.0, Bordeaux, 2012, http://pari.math.u-bordeaux.fr/.
- Georges Poitou, Sur les petits discriminants, Séminaire Delange-Pisot-Poitou, 18e année: 1976/77, Théorie des nombres, Fasc. 1, Secrétariat Math., Paris, 1977, pp. Exp. No. 6, 18 (French). MR 551335
- R. J. Schoof, Class groups of complex quadratic fields, Math. Comp. 41 (1983), no. 163, 295–302. MR 701640, DOI 10.1090/S0025-5718-1983-0701640-0
- H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135–152. MR 342472, DOI 10.1007/BF01405166
- André Weil, Sur les “formules explicites” de la théorie des nombres premiers, Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (1952), no. Tome Supplémentaire, 252–265 (French). MR 53152
Bibliographic Information
- Karim Belabas
- Affiliation: Université Bordeaux, IMB, UMR 5251, F-33400 Talence; France; CNRS, IMB, UMR 5251, F-33400 Talence, France; INRIA, F-33400 Talence, France
- Email: Karim.Belabas@math.u-bordeaux1.fr
- Eduardo Friedman
- Affiliation: Departamento de Matemática, Universidad de Chile, Casilla 653, Santiago, Chile
- MR Author ID: 69455
- Email: friedman@uchile.cl
- Received by editor(s): June 18, 2012
- Received by editor(s) in revised form: April 30, 2013
- Published electronically: May 7, 2014
- Additional Notes: The first author was supported by the ANR projects ALGOL (07-BLAN-0248) and PEACE (ANR-12-BS01-0010-01).
The second author was partially supported by the Chilean Programa Iniciativa Científica Milenio grant ICM P07-027-F and Fondecyt grant 1110277. - © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 84 (2015), 357-369
- MSC (2010): Primary 11R42; Secondary 11Y40
- DOI: https://doi.org/10.1090/S0025-5718-2014-02843-3
- MathSciNet review: 3266965