ERRATUM: "ON THE COMPUTATION OF LOCAL COMPONENTS OF A NEWFORM"

DAVID LOEFFLER AND JARED WEINSTEIN

ABSTRACT. It has been brought to our attention that there is an error in Section 4 of our article, On the computation of local components of a newform, Math. Comp. 81, 2012. We briefly explain how this error can be corrected.

Proposition 4.1(1) of our article [2] is not correct as stated. For instance, if ε is the quadratic Dirichlet character of conductor 15, then there are two newforms in $S_3(\Gamma_1(15), \varepsilon)$ with coefficients in \mathbf{Q} , and these are twists of each other by the quadratic character of conductor 3, whereas the quantity u in the proposition is 0 here. We are grateful to Steve Donnelly of the University of Sydney for pointing out this counterexample.

The correct statement is the following. Let f be a newform of level Np^r , with $p \nmid N$, and character $\varepsilon = \varepsilon_N \varepsilon_p$, where ε_N has conductor prime to p and the conductor of ε_p is p^c . Let $u = \min(\lfloor \frac{r}{2} \rfloor, r - c)$.

Theorem. In the notation of Proposition 4.1 of the article, if χ is a Dirichlet character of conductor p^v with v > u, then f_{χ} is new of level $Np^{\max(2v,c+v)} > Np^r$, unless v = c and χ is of the form $\varepsilon_p^{-1}\chi'$, where χ' has conductor dividing p^{c-1} .

In the latter case, the level of the newform $f \otimes \chi$ corresponding to f_{χ} is the same as that of $f \otimes (\chi')^{-1}$; in particular, it is strictly greater than Np^r unless χ' has conductor at most p^u .

Proof. By Theorem 3.1(ii) of [1], f_{χ} is new of level $Np^{\max(2v,c+v)}$, unless $\chi' = \varepsilon_p \chi$ has conductor strictly less than $p^{\max(c,v)}$, which is only possible if c = v.

We note that if $\chi' = \varepsilon_p \chi$, then $f \otimes \chi = (f \otimes (\chi')^{-1}) \otimes \nu^{-1}$, where $\nu = (\chi')^{-2} \varepsilon_p$ is the *p*-part of the nebentypus of $f \otimes (\chi')^{-1}$. Up to a scalar this is $W_p(f \otimes (\chi')^{-1})$, where W_p is the Atkin–Lehner operator at *p*. Hence $f \otimes \chi$ and $f \otimes (\chi'^{-1})$ have the same level at *p*, as claimed.

It follows immediately that the infimum of the levels of the newforms $f \otimes \chi$, as χ runs through the set of all Dirichlet characters of *p*-power conductor, is attained for some character of conductor at most p^u , although it will also be attained for some characters outside this range if u < c.

Hence in part (1) of both Proposition 4.2 and Proposition 4.4, "of *p*-power conductor" needs to be corrected to "of conductor dividing p^{u} ", but the last sentence of each of these two propositions holds without modification and the algorithm described in §5 is still valid.

©2014 American Mathematical Society Reverts to public domain 28 years from publication

Received by the editor April 18, 2013.

²⁰¹⁰ Mathematics Subject Classification. Primary 11F70; Secondary 11F11, 11Y99.

References

- A. O. L. Atkin and Wen Ch'ing Winnie Li, Twists of newforms and pseudo-eigenvalues of W-operators, Invent. Math. 48 (1978), no. 3, 221–243, DOI 10.1007/BF01390245. MR508986 (80a:10040)
- [2] David Loeffler and Jared Weinstein, On the computation of local components of a newform, Math. Comp. 81 (2012), no. 278, 1179–1200, DOI 10.1090/S0025-5718-2011-02530-5. MR2869056 (2012k:11064)

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY CV4 7AL, UNITED KINGDOM *E-mail address*: d.a.loeffler@warwick.ac.uk

Department of Mathematics, Boston University, Boston, Massachusetts 02215 $E\text{-}mail\ address:\ \texttt{jsweinst@math.bu.edu}$