Some functional relations derived from the Lindelöf-Wirtinger expansion of the Lerch transcendent function
HTML articles powered by AMS MathViewer
- by Luis M. Navas, Francisco J. Ruiz and Juan L. Varona;
- Math. Comp. 84 (2015), 803-813
- DOI: https://doi.org/10.1090/S0025-5718-2014-02864-0
- Published electronically: August 19, 2014
- PDF | Request permission
Abstract:
The Lindelöf-Wirtinger expansion of the Lerch transcendent function implies, as a limiting case, Hurwitz’s formula for the eponymous zeta function. A generalized form of Möbius inversion applies to the Lindelöf-Wirtinger expansion and also implies an inversion formula for the Hurwitz zeta function as a limiting case. The inverted formulas involve the dynamical system of rotations of the circle and yield an arithmetical functional equation.References
- T. M. Apostol, On the Lerch zeta function, Pacific J. Math. 1 (1951), 161–167. MR 43843
- T. M. Apostol, Zeta and related functions, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington, DC, 2010, pp. 601–616. MR 2655365
- Eugenio P. Balanzario and Jorge Sánchez-Ortiz, Riemann-Siegel integral formula for the Lerch zeta function, Math. Comp. 81 (2012), no. 280, 2319–2333. MR 2945158, DOI 10.1090/S0025-5718-2011-02566-4
- A. Bayad and J. Chikhi, Möbius inversion formulae for Apostol-Bernoulli type polynomials and numbers, Math. Comp. 82 (2013), no. 284, 2327–2332. MR 3073203, DOI 10.1090/S0025-5718-2013-02699-3
- Manuel Benito, Luis M. Navas, and Juan L. Varona, Möbius inversion formulas for flows of arithmetic semigroups, J. Number Theory 128 (2008), no. 2, 390–412. MR 2380327, DOI 10.1016/j.jnt.2007.04.009
- Manuel Benito, Luis M. Navas, and Juan Luis Varona, Möbius inversion from the point of view of arithmetical semigroup flows, Proceedings of the “Segundas Jornadas de Teoría de Números”, Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 2008, pp. 63–81. MR 2603898
- Khristo N. Boyadzhiev, Apostol-Bernoulli functions, derivative polynomials and Eulerian polynomials, Adv. Appl. Discrete Math. 1 (2008), no. 2, 109–122. MR 2450260
- A. Erdélyi, W. Magnus, F. Oberhettinger and F. Tricomi, Higher Transcendental Functions, Volume I, McGraw-Hill, New York, 1953.
- Jesús Guillera and Jonathan Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent, Ramanujan J. 16 (2008), no. 3, 247–270. MR 2429900, DOI 10.1007/s11139-007-9102-0
- B. R. Johnson, Generalized Lerch zeta function, Pacific J. Math. 53 (1974), 189–193. MR 352020
- M. Lerch, Note sur la fonction ${\mathfrak {K}} \left ( {w,x,s} \right ) = \sum \limits _{k = 0}^\infty {\frac {{e^{2k\pi ix} }}{{\left ( {w + k} \right )^s }}}$, Acta Math. 11 (1887), no. 1-4, 19–24 (French). MR 1554747, DOI 10.1007/BF02418041
- Luis M. Navas, Francisco J. Ruiz, and Juan L. Varona, The Möbius inversion formula for Fourier series applied to Bernoulli and Euler polynomials, J. Approx. Theory 163 (2011), no. 1, 22–40. MR 2741217, DOI 10.1016/j.jat.2010.02.005
- Luis M. Navas, Francisco J. Ruiz, and Juan L. Varona, Asymptotic estimates for Apostol-Bernoulli and Apostol-Euler polynomials, Math. Comp. 81 (2012), no. 279, 1707–1722. MR 2904599, DOI 10.1090/S0025-5718-2012-02568-3
- Luis M. Navas, Francisco J. Ruiz, and Juan L. Varona, Asymptotic behavior of the Lerch transcendent function, J. Approx. Theory 170 (2013), 21–31. MR 3044042, DOI 10.1016/j.jat.2012.03.006
- H. M. Srivastava and Junesang Choi, Series associated with the zeta and related functions, Kluwer Academic Publishers, Dordrecht, 2001. MR 1849375, DOI 10.1007/978-94-015-9672-5
- W. Wirtinger, Über eine besondere Dirichletsche Reihe, J. Reine Angew. Math. 129 (1905), 214–219.
Bibliographic Information
- Luis M. Navas
- Affiliation: Departamento de Matemáticas, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain
- MR Author ID: 679507
- ORCID: 0000-0002-5742-8679
- Email: navas@usal.es
- Francisco J. Ruiz
- Affiliation: Departamento de Matemáticas, Universidad de Zaragoza, Campus de la Plaza de San Francisco, 50009 Zaragoza, Spain
- Email: fjruiz@unizar.es
- Juan L. Varona
- Affiliation: Departamento de Matemáticas y Computación, Universidad de La Rioja, Calle Luis de Ulloa s/n, 26004 Logroño, Spain
- MR Author ID: 260232
- ORCID: 0000-0002-2023-9946
- Email: jvarona@unirioja.es
- Received by editor(s): February 5, 2013
- Received by editor(s) in revised form: July 28, 2013
- Published electronically: August 19, 2014
- Additional Notes: The authors were supported by grant MTM2012-36732-C03-02 of the DGI
- © Copyright 2014 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 803-813
- MSC (2010): Primary 41A60; Secondary 11M35, 42A10
- DOI: https://doi.org/10.1090/S0025-5718-2014-02864-0
- MathSciNet review: 3290964