The minimal conforming $H^k$ finite element spaces on $R^n$ rectangular grids
HTML articles powered by AMS MathViewer
- by Jun Hu and Shangyou Zhang;
- Math. Comp. 84 (2015), 563-579
- DOI: https://doi.org/10.1090/S0025-5718-2014-02871-8
- Published electronically: August 14, 2014
- PDF | Request permission
Abstract:
A family of $C^{k-1}$-$Q_{k}$ finite elements on $R^n$ rectangular grids is constructed. The finite element space is shown to be the full $C^{k-1}$-$Q_{k}$ space and possess the optimal order of approximation property. The polynomial degree is minimal in order to form such a $H^{k}$ finite element space. Numerical tests are provided for using the 2D $C^1$-$Q_{2}$ and $C^2$-$Q_{3}$ finite elements.References
- Vilhelm Adolfsson and Jill Pipher, The inhomogeneous Dirichlet problem for $\Delta ^2$ in Lipschitz domains, J. Funct. Anal. 159 (1998), no. 1, 137–190. MR 1654182, DOI 10.1006/jfan.1998.3300
- Peter Alfeld and Maritza Sirvent, The structure of multivariate superspline spaces of high degree, Math. Comp. 57 (1991), no. 195, 299–308. MR 1079007, DOI 10.1090/S0025-5718-1991-1079007-2
- M. S. Agranovich, On the theory of Dirichlet and Neumann problems for linear strongly elliptic systems with Lipschitz domains, Funktsional. Anal. i Prilozhen. 41 (2007), no. 4, 1–21, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 41 (2007), no. 4, 247–263. MR 2411602, DOI 10.1007/s10688-007-0023-x
- J. H. Argyris, I. Fried, D. W. Scharpf, The TUBA family of plate elements for the matrix displacement method, The Aeronautical Journal of the Royal Aeronautical Society 72 (1968), pp. 514–517.
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Monique Dauge, Problèmes de Neumann et de Dirichlet sur un polyèdre dans $\textbf {R}^3$: régularité dans des espaces de Sobolev $L_p$, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 1, 27–32 (French, with English summary). MR 954085
- Monique Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR 961439, DOI 10.1007/BFb0086682
- V. Girault and L. R. Scott, Hermite interpolation of nonsmooth functions preserving boundary conditions, Math. Comp. 71 (2002), no. 239, 1043–1074. MR 1898745, DOI 10.1090/S0025-5718-02-01446-1
- J. Hu, Y. Q. Huang and Q. Lin. The lower bounds for eigenvalues of elliptic operators-by nonconforming finite element methods. arXiv:1112.1145v2[math.NA], 2013.
- Jun Hu, Yunqing Huang, and Shangyou Zhang, The lowest order differentiable finite element on rectangular grids, SIAM J. Numer. Anal. 49 (2011), no. 4, 1350–1368. MR 2817542, DOI 10.1137/100806497
- Jun Hu and Zhong-ci Shi, Constrained quadrilateral nonconforming rotated ${\scr Q}_1$ element, J. Comput. Math. 23 (2005), no. 6, 561–586. MR 2190317
- Jun Hu and Zhong-Ci Shi, The best $L^2$ norm error estimate of lower order finite element methods for the fourth order problem, J. Comput. Math. 30 (2012), no. 5, 449–460. MR 2988473, DOI 10.4208/jcm.1203-m3855
- David Jerison and Carlos E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), no. 1, 161–219. MR 1331981, DOI 10.1006/jfan.1995.1067
- Vladimir Kozlov and Vladimir Maz′ya, Asymptotic formula for solutions to elliptic equations near the Lipschitz boundary, Ann. Mat. Pura Appl. (4) 184 (2005), no. 2, 185–213. MR 2149092, DOI 10.1007/s10231-004-0108-6
- Heejeong Lee and Dongwoo Sheen, A new quadratic nonconforming finite element on rectangles, Numer. Methods Partial Differential Equations 22 (2006), no. 4, 954–970. MR 2230281, DOI 10.1002/num.20131
- Chunjae Park and Dongwoo Sheen, $P_1$-nonconforming quadrilateral finite element methods for second-order elliptic problems, SIAM J. Numer. Anal. 41 (2003), no. 2, 624–640. MR 2004191, DOI 10.1137/S0036142902404923
- M. J. D. Powell and M. A. Sabin, Piecewise quadratic approximations on triangles, ACM Trans. Math. Software 3 (1977), no. 4, 316–325. MR 483304, DOI 10.1145/355759.355761
- Larry L. Schumaker, Spline functions: basic theory, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2007. MR 2348176, DOI 10.1017/CBO9780511618994
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- Chung Tze Shih, On a spline finite element method, Math. Numer. Sinica 1 (1979), no. 1, 50–72 (Chinese, with English summary). MR 656879
- Ming Wang and Jinchao Xu, Minimal finite element spaces for $2m$-th-order partial differential equations in $R^n$, Math. Comp. 82 (2013), no. 281, 25–43. MR 2983014, DOI 10.1090/S0025-5718-2012-02611-1
- Ming Wang, Zhong-Ci Shi, and Jinchao Xu, Some $n$-rectangle nonconforming elements for fourth order elliptic equations, J. Comput. Math. 25 (2007), no. 4, 408–420. MR 2337403
- Xuejun Xu and Shangyou Zhang, A new divergence-free interpolation operator with applications to the Darcy-Stokes-Brinkman equations, SIAM J. Sci. Comput. 32 (2010), no. 2, 855–874. MR 2609343, DOI 10.1137/090751049
- Shangyou Zhang, A family of 3D continuously differentiable finite elements on tetrahedral grids, Appl. Numer. Math. 59 (2009), no. 1, 219–233. MR 2474112, DOI 10.1016/j.apnum.2008.02.002
- Shangyou Zhang, On the full $C_1$-$Q_k$ finite element spaces on rectangles and cuboids, Adv. Appl. Math. Mech. 2 (2010), no. 6, 701–721. MR 2719052, DOI 10.4208/aamm.09-m0993
Bibliographic Information
- Jun Hu
- Affiliation: LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- MR Author ID: 714525
- Email: hujun@math.pku.edu.cn
- Shangyou Zhang
- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delawre 19716
- MR Author ID: 261174
- Email: szhang@udel.edu
- Received by editor(s): January 27, 2013
- Received by editor(s) in revised form: May 10, 2013, June 6, 2013, and August 1, 2013
- Published electronically: August 14, 2014
- Additional Notes: The first author was supported by the NSFC Project 11271035, and in part by the NSFC Key Project 11031006.
- © Copyright 2014 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 563-579
- MSC (2010): Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-2014-02871-8
- MathSciNet review: 3290955