## The minimal conforming $H^k$ finite element spaces on $R^n$ rectangular grids

HTML articles powered by AMS MathViewer

- by Jun Hu and Shangyou Zhang PDF
- Math. Comp.
**84**(2015), 563-579 Request permission

## Abstract:

A family of $C^{k-1}$-$Q_{k}$ finite elements on $R^n$ rectangular grids is constructed. The finite element space is shown to be the full $C^{k-1}$-$Q_{k}$ space and possess the optimal order of approximation property. The polynomial degree is minimal in order to form such a $H^{k}$ finite element space. Numerical tests are provided for using the 2D $C^1$-$Q_{2}$ and $C^2$-$Q_{3}$ finite elements.## References

- Vilhelm Adolfsson and Jill Pipher,
*The inhomogeneous Dirichlet problem for $\Delta ^2$ in Lipschitz domains*, J. Funct. Anal.**159**(1998), no. 1, 137–190. MR**1654182**, DOI 10.1006/jfan.1998.3300 - Peter Alfeld and Maritza Sirvent,
*The structure of multivariate superspline spaces of high degree*, Math. Comp.**57**(1991), no. 195, 299–308. MR**1079007**, DOI 10.1090/S0025-5718-1991-1079007-2 - M. S. Agranovich,
*On the theory of Dirichlet and Neumann problems for linear strongly elliptic systems with Lipschitz domains*, Funktsional. Anal. i Prilozhen.**41**(2007), no. 4, 1–21, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl.**41**(2007), no. 4, 247–263. MR**2411602**, DOI 10.1007/s10688-007-0023-x - J. H. Argyris, I. Fried, D. W. Scharpf, The TUBA family of plate elements for the matrix displacement method, The Aeronautical Journal of the Royal Aeronautical Society
**72**(1968), pp. 514–517. - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**0520174** - Monique Dauge,
*Problèmes de Neumann et de Dirichlet sur un polyèdre dans $\textbf {R}^3$: régularité dans des espaces de Sobolev $L_p$*, C. R. Acad. Sci. Paris Sér. I Math.**307**(1988), no. 1, 27–32 (French, with English summary). MR**954085** - Monique Dauge,
*Elliptic boundary value problems on corner domains*, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR**961439**, DOI 10.1007/BFb0086682 - V. Girault and L. R. Scott,
*Hermite interpolation of nonsmooth functions preserving boundary conditions*, Math. Comp.**71**(2002), no. 239, 1043–1074. MR**1898745**, DOI 10.1090/S0025-5718-02-01446-1 - J. Hu, Y. Q. Huang and Q. Lin.
*The lower bounds for eigenvalues of elliptic operators-by nonconforming finite element methods*. arXiv:1112.1145v2[math.NA], 2013. - Jun Hu, Yunqing Huang, and Shangyou Zhang,
*The lowest order differentiable finite element on rectangular grids*, SIAM J. Numer. Anal.**49**(2011), no. 4, 1350–1368. MR**2817542**, DOI 10.1137/100806497 - Jun Hu and Zhong-ci Shi,
*Constrained quadrilateral nonconforming rotated ${\scr Q}_1$ element*, J. Comput. Math.**23**(2005), no. 6, 561–586. MR**2190317** - Jun Hu and Zhong-Ci Shi,
*The best $L^2$ norm error estimate of lower order finite element methods for the fourth order problem*, J. Comput. Math.**30**(2012), no. 5, 449–460. MR**2988473**, DOI 10.4208/jcm.1203-m3855 - David Jerison and Carlos E. Kenig,
*The inhomogeneous Dirichlet problem in Lipschitz domains*, J. Funct. Anal.**130**(1995), no. 1, 161–219. MR**1331981**, DOI 10.1006/jfan.1995.1067 - Vladimir Kozlov and Vladimir Maz′ya,
*Asymptotic formula for solutions to elliptic equations near the Lipschitz boundary*, Ann. Mat. Pura Appl. (4)**184**(2005), no. 2, 185–213. MR**2149092**, DOI 10.1007/s10231-004-0108-6 - Heejeong Lee and Dongwoo Sheen,
*A new quadratic nonconforming finite element on rectangles*, Numer. Methods Partial Differential Equations**22**(2006), no. 4, 954–970. MR**2230281**, DOI 10.1002/num.20131 - Chunjae Park and Dongwoo Sheen,
*$P_1$-nonconforming quadrilateral finite element methods for second-order elliptic problems*, SIAM J. Numer. Anal.**41**(2003), no. 2, 624–640. MR**2004191**, DOI 10.1137/S0036142902404923 - M. J. D. Powell and M. A. Sabin,
*Piecewise quadratic approximations on triangles*, ACM Trans. Math. Software**3**(1977), no. 4, 316–325. MR**483304**, DOI 10.1145/355759.355761 - Larry L. Schumaker,
*Spline functions: basic theory*, 3rd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2007. MR**2348176**, DOI 10.1017/CBO9780511618994 - L. Ridgway Scott and Shangyou Zhang,
*Finite element interpolation of nonsmooth functions satisfying boundary conditions*, Math. Comp.**54**(1990), no. 190, 483–493. MR**1011446**, DOI 10.1090/S0025-5718-1990-1011446-7 - Chung Tze Shih,
*On a spline finite element method*, Math. Numer. Sinica**1**(1979), no. 1, 50–72 (Chinese, with English summary). MR**656879** - Ming Wang and Jinchao Xu,
*Minimal finite element spaces for $2m$-th-order partial differential equations in $R^n$*, Math. Comp.**82**(2013), no. 281, 25–43. MR**2983014**, DOI 10.1090/S0025-5718-2012-02611-1 - Ming Wang, Zhong-Ci Shi, and Jinchao Xu,
*Some $n$-rectangle nonconforming elements for fourth order elliptic equations*, J. Comput. Math.**25**(2007), no. 4, 408–420. MR**2337403** - Xuejun Xu and Shangyou Zhang,
*A new divergence-free interpolation operator with applications to the Darcy-Stokes-Brinkman equations*, SIAM J. Sci. Comput.**32**(2010), no. 2, 855–874. MR**2609343**, DOI 10.1137/090751049 - Shangyou Zhang,
*A family of 3D continuously differentiable finite elements on tetrahedral grids*, Appl. Numer. Math.**59**(2009), no. 1, 219–233. MR**2474112**, DOI 10.1016/j.apnum.2008.02.002 - Shangyou Zhang,
*On the full $C_1$-$Q_k$ finite element spaces on rectangles and cuboids*, Adv. Appl. Math. Mech.**2**(2010), no. 6, 701–721. MR**2719052**, DOI 10.4208/aamm.09-m0993

## Additional Information

**Jun Hu**- Affiliation: LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, People’s Republic of China
- MR Author ID: 714525
- Email: hujun@math.pku.edu.cn
**Shangyou Zhang**- Affiliation: Department of Mathematical Sciences, University of Delaware, Newark, Delawre 19716
- MR Author ID: 261174
- Email: szhang@udel.edu
- Received by editor(s): January 27, 2013
- Received by editor(s) in revised form: May 10, 2013, June 6, 2013, and August 1, 2013
- Published electronically: August 14, 2014
- Additional Notes: The first author was supported by the NSFC Project 11271035, and in part by the NSFC Key Project 11031006.
- © Copyright 2014 American Mathematical Society
- Journal: Math. Comp.
**84**(2015), 563-579 - MSC (2010): Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-2014-02871-8
- MathSciNet review: 3290955