Computing $p$-adic $L$-functions of totally real number fields
HTML articles powered by AMS MathViewer
- by Xavier-François Roblot;
- Math. Comp. 84 (2015), 831-874
- DOI: https://doi.org/10.1090/S0025-5718-2014-02889-5
- Published electronically: September 23, 2014
- PDF | Request permission
Abstract:
We prove new explicit formulas for the $p$-adic $L$-functions of totally real number fields and show how these formulas can be used to compute values and representations of $p$-adic $L$-functions.References
- Yvette Amice, Interpolation $p$-adique, Bull. Soc. Math. France 92 (1964), 117–180 (French). MR 188199
- Eric Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), no. 191, 355–380. MR 1023756, DOI 10.1090/S0025-5718-1990-1023756-8
- Daniel Barsky, Fonctions zeta $p$-adiques d’une classe de rayon des corps de nombres totalement réels, Groupe d’Étude d’Analyse Ultramétrique (5e année: 1977/78), Secrétariat Math., Paris, 1978, pp. Exp. No. 16, 23 (French). MR 525346
- Karim Belabas, Topics in computational algebraic number theory, J. Théor. Nombres Bordeaux 16 (2004), no. 1, 19–63 (English, with English and French summaries). MR 2145572
- A. Besser, P. Buckingham, R. de Jeu, and X.-F. Roblot, On the $p$-adic Beilinson conjecture for number fields, Pure Appl. Math. Q. 5 (2009), no. 1, 375–434. MR 2520465, DOI 10.4310/PAMQ.2009.v5.n1.a12
- P. Cartier and Y. Roy, Certains calculs numériques relatifs à l’interpolation $p$-adique des séries de Dirichlet, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin-New York, 1973, pp. 269–349 (French). MR 330113
- Pierrette Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta et fonctions zêta $p$-adiques, Invent. Math. 51 (1979), no. 1, 29–59 (French). MR 524276, DOI 10.1007/BF01389911
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Henri Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR 1728313, DOI 10.1007/978-1-4419-8489-0
- Pierre Colmez, Résidu en $s=1$ des fonctions zêta $p$-adiques, Invent. Math. 91 (1988), no. 2, 371–389 (French). MR 922806, DOI 10.1007/BF01389373
- Pierre Colmez, Fonctions d’une variable $p$-adique, Astérisque 330 (2010), 13–59 (French, with English and French summaries). MR 2642404
- Pierre Deligne and Kenneth A. Ribet, Values of abelian $L$-functions at negative integers over totally real fields, Invent. Math. 59 (1980), no. 3, 227–286. MR 579702, DOI 10.1007/BF01453237
- Francisco Diaz y Diaz and Eduardo Friedman, Colmez cones for fundamental units of totally real cubic fields, J. Number Theory 132 (2012), no. 8, 1653–1663. MR 2922336, DOI 10.1016/j.jnt.2012.02.016
- Francisco Diaz y Diaz and Eduardo Friedman, Signed fundamental domains for totally real number fields, Proc. Lond. Math. Soc. (3) 108 (2014), no. 4, 965–988. MR 3198753, DOI 10.1112/plms/pdt025
- Jordan S. Ellenberg, Sonal Jain, and Akshay Venkatesh, Modeling $\lambda$-invariants by $p$-adic random matrices, Comm. Pure Appl. Math. 64 (2011), no. 9, 1243–1262. MR 2839300, DOI 10.1002/cpa.20375
- R. Ernvall and T. Metsänkylä, Computation of the zeros of $p$-adic $L$-functions, Math. Comp. 58 (1992), no. 198, 815–830, S37–S53. MR 1122068, DOI 10.1090/S0025-5718-1992-1122068-3
- R. Ernvall and T. Metsänkylä, Computation of the zeros of $p$-adic $L$-functions. II, Math. Comp. 62 (1994), no. 205, 391–406. MR 1203734, DOI 10.1090/S0025-5718-1994-1203734-X
- Ralph Greenberg, On $p$-adic Artin $L$-functions, Nagoya Math. J. 89 (1983), 77–87. MR 692344, DOI 10.1017/S0027763000020250
- David R. Hayes, Brumer elements over a real quadratic base field, Exposition. Math. 8 (1990), no. 2, 137–184. MR 1052260
- Kenkichi Iwasawa and Charles C. Sims, Computation of invariants in the theory of cyclotomic fields, J. Math. Soc. Japan 18 (1966), 86–96. MR 202700, DOI 10.2969/jmsj/01810086
- Nicholas M. Katz, Another look at $p$-adic $L$-functions for totally real fields, Math. Ann. 255 (1981), no. 1, 33–43. MR 611271, DOI 10.1007/BF01450554
- Tomio Kubota and Heinrich-Wolfgang Leopoldt, Eine $p$-adische Theorie der Zetawerte. I. Einführung der $p$-adischen Dirichletschen $L$-Funktionen, J. Reine Angew. Math. 214(215) (1964), 328–339 (German). MR 163900
- Serge Lang, Cyclotomic fields I and II, 2nd ed., Graduate Texts in Mathematics, vol. 121, Springer-Verlag, New York, 1990. With an appendix by Karl Rubin. MR 1029028, DOI 10.1007/978-1-4612-0987-4
- Jürgen Neukirch, Algebraic number theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322, Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher; With a foreword by G. Harder. MR 1697859, DOI 10.1007/978-3-662-03983-0
- Kenneth A. Ribet, Report on $p$-adic $L$-functions over totally real fields, Astérisque 61 (1979), 177–192. Luminy Conference on Arithmetic. MR 556672
- Alain M. Robert, A course in $p$-adic analysis, Graduate Texts in Mathematics, vol. 198, Springer-Verlag, New York, 2000. MR 1760253, DOI 10.1007/978-1-4757-3254-2
- X.-F. Roblot and D. Solomon, Verifying a $p$-adic abelian Stark conjecture at $s=1$, J. Number Theory 107 (2004), no. 1, 168–206. MR 2059956, DOI 10.1016/j.jnt.2003.12.013
- Xavier-François Roblot and Alfred Weiss, Numerical evidence toward a 2-adic equivariant “main conjecture”, Exp. Math. 20 (2011), no. 2, 169–176. MR 2821388, DOI 10.1080/10586458.2011.564541
- Takuro Shintani, On evaluation of zeta functions of totally real algebraic number fields at non-positive integers, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), no. 2, 393–417. MR 427231
- David Solomon, The Shintani cocycle. II. Partial $\zeta$-functions, cohomologous cocycles and $p$-adic interpolation, J. Number Theory 75 (1999), no. 1, 53–108. MR 1670874, DOI 10.1006/jnth.1998.2332
- The PARI Group, Université Bordeaux 1. PARI/GP. Available from http://pari.math.u-bordeaux.fr/.
- D. Zagier, Valeurs des fonctions zêta des corps quadratiques réels aux entiers négatifs, Journées Arithmétiques de Caen (Univ. Caen, Caen, 1976) Astérisque, No. 41–42, Soc. Math. France, Paris, 1977, pp. 135–151 (French). MR 441925
Bibliographic Information
- Xavier-François Roblot
- Affiliation: Université de Lyon, Université Lyon 1, CNRS UMR5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918, 69622 Villeurbanne Cedex, France
- Email: roblot@math.univ-lyon1.fr
- Received by editor(s): April 23, 2012
- Received by editor(s) in revised form: June 25, 2013
- Published electronically: September 23, 2014
- Additional Notes: The author was supported in part by the ANR AlgoL (ANR-07-BLAN-0248) and the JSPS Global COE CompView.
- © Copyright 2014 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 831-874
- MSC (2010): Primary 11R42, 11Y40
- DOI: https://doi.org/10.1090/S0025-5718-2014-02889-5
- MathSciNet review: 3290966