## Well-posedness study and finite element simulation of time-domain cylindrical and elliptical cloaks

HTML articles powered by AMS MathViewer

- by Jichun Li, Yunqing Huang and Wei Yang PDF
- Math. Comp.
**84**(2015), 543-562 Request permission

## Abstract:

The goal of this paper is to prove the well-posedness for the governing equations which are used for cylindrical cloaking simulation. A new time-domain finite element scheme is developed to solve the governing equations. Numerical results demonstrating the cloaking phenomenon with the cylindrical cloak are presented. We finally extend the analysis and simulation to an elliptical cloak model.## References

- A. Alú and N. Engheta,
*Achieving transparency with plasmonic and metamaterial coatings*, Phys. Rev. E 72 (2005) 016623. - Habib Ammari, Giulio Ciraolo, Hyeonbae Kang, Hyundae Lee, and Graeme W. Milton,
*Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance*, Arch. Ration. Mech. Anal.**208**(2013), no. 2, 667–692. MR**3035988**, DOI 10.1007/s00205-012-0605-5 - Habib Ammari, Josselin Garnier, Vincent Jugnon, Hyeonbae Kang, Hyundae Lee, and Mikyoung Lim,
*Enhancement of near-cloaking. Part III: Numerical simulations, statistical stability, and related questions*, Multi-scale and high-contrast PDE: from modelling, to mathematical analysis, to inversion, Contemp. Math., vol. 577, Amer. Math. Soc., Providence, RI, 2012, pp. 1–24. MR**2985063**, DOI 10.1090/conm/577/11460 - Habib Ammari, Hyeonbae Kang, Hyundae Lee, and Mikyoung Lim,
*Enhancement of near cloaking using generalized polarization tensors vanishing structures. Part I: The conductivity problem*, Comm. Math. Phys.**317**(2013), no. 1, 253–266. MR**3010374**, DOI 10.1007/s00220-012-1615-8 - Habib Ammari, Hyeonbae Kang, Hyundae Lee, and Mikyoung Lim,
*Enhancement of near-cloaking. Part II: The Helmholtz equation*, Comm. Math. Phys.**317**(2013), no. 2, 485–502. MR**3010192**, DOI 10.1007/s00220-012-1620-y - Habib Ammari, Hyeonbae Kang, Hyundae Lee, Mikyoung Lim, and Sanghyeon Yu,
*Enhancement of near cloaking for the full Maxwell equations*, SIAM J. Appl. Math.**73**(2013), no. 6, 2055–2076. MR**3127003**, DOI 10.1137/120903610 - Gang Bao, Peijun Li, and Haijun Wu,
*An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures*, Math. Comp.**79**(2010), no. 269, 1–34. MR**2552215**, DOI 10.1090/S0025-5718-09-02257-1 - Rudi Beck, Ralf Hiptmair, Ronald H. W. Hoppe, and Barbara Wohlmuth,
*Residual based a posteriori error estimators for eddy current computation*, M2AN Math. Model. Numer. Anal.**34**(2000), no. 1, 159–182 (English, with English and French summaries). MR**1735971**, DOI 10.1051/m2an:2000136 - Jean-Pierre Berenger,
*A perfectly matched layer for the absorption of electromagnetic waves*, J. Comput. Phys.**114**(1994), no. 2, 185–200. MR**1294924**, DOI 10.1006/jcph.1994.1159 - S. C. Brenner, J. Cui, Z. Nan, and L.-Y. Sung,
*Hodge decomposition for divergence-free vector fields and two-dimensional Maxwell’s equations*, Math. Comp.**81**(2012), no. 278, 643–659. MR**2869031**, DOI 10.1090/S0025-5718-2011-02540-8 - Susanne C. Brenner, Fengyan Li, and Li-Yeng Sung,
*A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations*, Math. Comp.**76**(2007), no. 258, 573–595. MR**2291828**, DOI 10.1090/S0025-5718-06-01950-8 - H. Chen, C.T. Chan and P. Sheng,
*Transformation optics and metamaterials*, Nature Materials 9 (2010) 387–396. - Zhiming Chen, Qiang Du, and Jun Zou,
*Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients*, SIAM J. Numer. Anal.**37**(2000), no. 5, 1542–1570. MR**1759906**, DOI 10.1137/S0036142998349977 - Eric T. Chung, Patrick Ciarlet Jr., and Tang Fei Yu,
*Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell’s equations on Cartesian grids*, J. Comput. Phys.**235**(2013), 14–31. MR**3017583**, DOI 10.1016/j.jcp.2012.10.019 - P. Ciarlet Jr. and Jun Zou,
*Fully discrete finite element approaches for time-dependent Maxwell’s equations*, Numer. Math.**82**(1999), no. 2, 193–219 (English, with English and French summaries). MR**1685459**, DOI 10.1007/s002110050417 - S.A. Cummer, B.-I. Popa, D. Schurig, D.R. Smith and J. Pendry,
*Full-wave simulations of electromagnetic cloaking structures*, Phys. Rev. E 74 (2006) 036621. - Leszek Demkowicz, Jason Kurtz, David Pardo, Maciej Paszyński, Waldemar Rachowicz, and Adam Zdunek,
*Computing with $hp$-adaptive finite elements. Vol. 2*, Chapman & Hall/CRC Applied Mathematics and Nonlinear Science Series, Chapman & Hall/CRC, Boca Raton, FL, 2008. Frontiers: three dimensional elliptic and Maxwell problems with applications. MR**2406401** - Paolo Fernandes and Mirco Raffetto,
*Well-posedness and finite element approximability of time-harmonic electromagnetic boundary value problems involving bianisotropic materials and metamaterials*, Math. Models Methods Appl. Sci.**19**(2009), no. 12, 2299–2335. MR**2599662**, DOI 10.1142/S0218202509004121 - M. Fridman, A. Farsi, Y. Okawachi and A.L. Gaeta,
*Demonstration of temporal cloaking*, Nature 481 (2012) 62–65. - Allan Greenleaf, Matti Lassas, and Gunther Uhlmann,
*On nonuniqueness for Calderón’s inverse problem*, Math. Res. Lett.**10**(2003), no. 5-6, 685–693. MR**2024725**, DOI 10.4310/MRL.2003.v10.n5.a11 - Allan Greenleaf, Yaroslav Kurylev, Matti Lassas, and Gunther Uhlmann,
*Cloaking devices, electromagnetic wormholes, and transformation optics*, SIAM Rev.**51**(2009), no. 1, 3–33. MR**2481110**, DOI 10.1137/080716827 - S. Guenneau, R.C. McPhedran, S. Enoch, A.B. Movchan, M. Farhat and N.-A. P. Nicorovici,
*The colours of cloaks*, J. Opt. 13 (2011) 024014. - F. Guevara Vasquez, G.W. Milton and D. Onofrei,
*Broadband exterior cloaking*, Opt. Express 17 (2009) 14800–14805. - J. Hao, W. Yan and M. Qiu,
*Super-reflection and cloaking based on zero index metamaterial*, Appl. Phys. Lett. 96, 101109 (2010). - Y. Hao and R. Mittra,
*FDTD Modeling of Metamaterials: Theory and Applications*, Artech House Publishers, 2008. - Jan S. Hesthaven and Tim Warburton,
*Nodal discontinuous Galerkin methods*, Texts in Applied Mathematics, vol. 54, Springer, New York, 2008. Algorithms, analysis, and applications. MR**2372235**, DOI 10.1007/978-0-387-72067-8 - Paul Houston, Ilaria Perugia, Anna Schneebeli, and Dominik Schötzau,
*Interior penalty method for the indefinite time-harmonic Maxwell equations*, Numer. Math.**100**(2005), no. 3, 485–518. MR**2194528**, DOI 10.1007/s00211-005-0604-7 - W.X. Jiang, T.J. Cui, G.X. Yu, X.Q. Lin, Q. Cheng, J.Y. Chin,
*Arbitrarily elliptical-cylindrical invisible cloaking*, J. Phys. D: Appl. Phys. 41 (2008), 085504. - Robert V. Kohn, Daniel Onofrei, Michael S. Vogelius, and Michael I. Weinstein,
*Cloaking via change of variables for the Helmholtz equation*, Comm. Pure Appl. Math.**63**(2010), no. 8, 973–1016. MR**2642383**, DOI 10.1002/cpa.20326 - R. V. Kohn, H. Shen, M. S. Vogelius, and M. I. Weinstein,
*Cloaking via change of variables in electric impedance tomography*, Inverse Problems**24**(2008), no. 1, 015016, 21. MR**2384775**, DOI 10.1088/0266-5611/24/1/015016 - Ulf Leonhardt,
*Optical conformal mapping*, Science**312**(2006), no. 5781, 1777–1780. MR**2237569**, DOI 10.1126/science.1126493 - Ulf Leonhardt and Thomas Philbin,
*Geometry and light*, Dover Publications, Inc., Mineola, NY, 2010. The science of invisibility. MR**2798945** - U. Leonhardt and T. Tyc,
*Broadband invisibility by non-Euclidean cloaking*, Science 323 (2009) 110–112. - Jichun Li and Yunqing Huang,
*Mathematical simulation of cloaking metamaterial structures*, Adv. Appl. Math. Mech.**4**(2012), no. 1, 93–101. MR**2876653**, DOI 10.4208/aamm.10-m11109 - Jichun Li and Yunqing Huang,
*Time-domain finite element methods for Maxwell’s equations in metamaterials*, Springer Series in Computational Mathematics, vol. 43, Springer, Heidelberg, 2013. MR**3013583**, DOI 10.1007/978-3-642-33789-5 - Jichun Li, Yunqing Huang, and Wei Yang,
*Developing a time-domain finite-element method for modeling of electromagnetic cylindrical cloaks*, J. Comput. Phys.**231**(2012), no. 7, 2880–2891. MR**2882105**, DOI 10.1016/j.jcp.2011.12.026 - Jingzhi Li, Hongyu Liu, and Hongpeng Sun,
*Enhanced approximate cloaking by SH and FSH lining*, Inverse Problems**28**(2012), no. 7, 075011, 21. MR**2946799**, DOI 10.1088/0266-5611/28/7/075011 - Z. Liang, P. Yao, X. Sun and X. Jiang,
*The physical picture and the essential elements of the dynamical process for dispersive cloaking structures*, Appl. Phys. Lett. 92, 131118 (2008). - Hongyu Liu and Ting Zhou,
*On approximate electromagnetic cloaking by transformation media*, SIAM J. Appl. Math.**71**(2011), no. 1, 218–241. MR**2776835**, DOI 10.1137/10081112X - R. Liu, C. Ji, J.J. Mock, J.Y. Chin, T.J. Cui and D.R. Smith,
*Broadband ground-plane cloak*, Science 323 (2009) 366–369. - Graeme W. Milton and Nicolae-Alexandru P. Nicorovici,
*On the cloaking effects associated with anomalous localized resonance*, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.**462**(2006), no. 2074, 3027–3059. MR**2263683**, DOI 10.1098/rspa.2006.1715 - Peter Monk,
*Finite element methods for Maxwell’s equations*, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR**2059447**, DOI 10.1093/acprof:oso/9780198508885.001.0001 - Hoai-Minh Nguyen,
*Approximate cloaking for the Helmholtz equation via transformation optics and consequences for perfect cloaking*, Comm. Pure Appl. Math.**65**(2012), no. 2, 155–186. MR**2855543**, DOI 10.1002/cpa.20392 - V.C. Nguyen, L. Chen and K. Halterman,
*Total transmission and total reflection by zero index metamaterials with defects*, Phys. Rev. Lett. 105, 233908 (2010). - N. Okada and J.B. Cole,
*FDTD modeling of a cloak with a nondiagonal permittivity tensor*, ISRN Optics, Article ID 536209, doi:10.5402/2012/536209, 2012. - J. B. Pendry, D. Schurig, and D. R. Smith,
*Controlling electromagnetic fields*, Science**312**(2006), no. 5781, 1780–1782. MR**2237570**, DOI 10.1126/science.1125907 - C. Scheid and S. Lanteri,
*Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell’s equations in dispersive media*, IMA J. Numer. Anal. (in press). doi:10.1093/imanum/drs008. - D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith,
*Metamaterial electromagnetic cloak at microwave frequencies*, Science 314 (2006) 977–980. - Simon Shaw,
*Finite element approximation of Maxwell’s equations with Debye memory*, Adv. Numer. Anal. , posted on (2010), Art. ID 923832, 28. MR**2747091**, DOI 10.1155/2010/923832 - Bo Wang, Ziqing Xie, and Zhimin Zhang,
*Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media*, J. Comput. Phys.**229**(2010), no. 22, 8552–8563. MR**2719188**, DOI 10.1016/j.jcp.2010.07.038 - M. Yan, W. Yan and M. Qiu,
*Invisibility cloaking by coordinate transformation*, Progress in Optics 52 (2009) 261–304. - Y. Zhao, C. Argyropoulos and Y. Hao,
*Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures*, Optics Express 16 (2008) 6717–6730. - Liuqiang Zhong, Long Chen, Shi Shu, Gabriel Wittum, and Jinchao Xu,
*Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations*, Math. Comp.**81**(2012), no. 278, 623–642. MR**2869030**, DOI 10.1090/S0025-5718-2011-02544-5

## Additional Information

**Jichun Li**- Affiliation: Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, Nevada 89154-4020
- Email: jichun@unlv.nevada.edu
**Yunqing Huang**- Affiliation: Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, China
- Email: huangyq@xtu.edu.cn
**Wei Yang**- Affiliation: Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Xiangtan 411105, China
- Email: yangweixtu@126.com
- Received by editor(s): January 16, 2013
- Received by editor(s) in revised form: July 22, 2013
- Published electronically: October 3, 2014
- Additional Notes: The first author was supported by NSFC project 11271310 and NSF grant DMS-0810896

The third author was supported by Hunan Education Department Key Project 10A117 and Hunan Provincial Innovation Foundation for Postgraduate (CX2011B243)

This work was supported in part by the NSFC Key Project 11031006 and IRT1179 of PCSIRT - © Copyright 2014 American Mathematical Society
- Journal: Math. Comp.
**84**(2015), 543-562 - MSC (2010): Primary 78M10, 65N30, 65F10
- DOI: https://doi.org/10.1090/S0025-5718-2014-02911-6
- MathSciNet review: 3290954