Analysis of a non-symmetric coupling of Interior Penalty DG and BEM
HTML articles powered by AMS MathViewer
- by Norbert Heuer and Francisco-Javier Sayas;
- Math. Comp. 84 (2015), 581-598
- DOI: https://doi.org/10.1090/S0025-5718-2014-02918-9
- Published electronically: October 30, 2014
- PDF | Request permission
Abstract:
We analyze a non-symmetric coupling of interior penalty discontinuous Galerkin and boundary element methods in two and three dimensions. Main results are discrete coercivity of the method, and thus unique solvability, and quasi-optimal convergence. The proof of coercivity is based on a localized variant of the variational technique from [F.-J. Sayas, The validity of Johnson-Nédeléc’s BEM-FEM coupling on polygonal interfaces, SIAM J. Numer. Anal., 47(5):3451–3463, 2009]. This localization gives rise to terms which are carefully analyzed in fractional order Sobolev spaces, and by using scaling arguments for rigid transformations. Numerical evidence of the proven convergence properties has been published previously.References
- Toufic Abboud, Patrick Joly, Jerónimo Rodríguez, and Isabelle Terrasse, Coupling discontinuous Galerkin methods and retarded potentials for transient wave propagation on unbounded domains, J. Comput. Phys. 230 (2011), no. 15, 5877–5907. MR 2804957, DOI 10.1016/j.jcp.2011.03.062
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise $H^1$ functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306–324. MR 1974504, DOI 10.1137/S0036142902401311
- F. Brezzi and C. Johnson, On the coupling of boundary integral and finite element methods, Calcolo 16 (1979), no. 2, 189–201. MR 569615, DOI 10.1007/BF02575926
- Rommel Bustinza, Gabriel N. Gatica, and Francisco-Javier Sayas, On the coupling of local discontinuous Galerkin and boundary element methods for non-linear exterior transmission problems, IMA J. Numer. Anal. 28 (2008), no. 2, 225–244. MR 2401197, DOI 10.1093/imanum/drm019
- Bernardo Cockburn, Johnny Guzmán, and Francisco-Javier Sayas, Coupling of Raviart-Thomas and hybridizable discontinuous Galerkin methods with BEM, SIAM J. Numer. Anal. 50 (2012), no. 5, 2778–2801. MR 3022242, DOI 10.1137/100818339
- Bernardo Cockburn and Francisco-Javier Sayas, The devising of symmetric couplings of boundary element and discontinuous Galerkin methods, IMA J. Numer. Anal. 32 (2012), no. 3, 765–794. MR 2954729, DOI 10.1093/imanum/drr019
- M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements (invited contribution), Boundary elements IX, Vol. 1 (Stuttgart, 1987) Comput. Mech., Southampton, 1987, pp. 411–420. MR 965328, DOI 10.1007/978-3-662-21908-9_{2}6
- M. Costabel and E. P. Stephan, Coupling of finite elements and boundary elements for inhomogeneous transmission problems in $\textbf {R}^3$, The mathematics of finite elements and applications, VI (Uxbridge, 1987) Academic Press, London, 1988, pp. 289–296. MR 956900
- Gabriel N. Gatica, Norbert Heuer, and Francisco-Javier Sayas, A direct coupling of local discontinuous Galerkin and boundary element methods, Math. Comp. 79 (2010), no. 271, 1369–1394. MR 2629997, DOI 10.1090/S0025-5718-10-02309-4
- Gabriel N. Gatica and George C. Hsiao, Boundary-field equation methods for a class of nonlinear problems, Pitman Research Notes in Mathematics Series, vol. 331, Longman, Harlow, 1995. MR 1379331
- Gabriel N. Gatica, George C. Hsiao, and Francisco-Javier Sayas, Relaxing the hypotheses of Bielak-MacCamy’s BEM-FEM coupling, Numer. Math. 120 (2012), no. 3, 465–487. MR 2890297, DOI 10.1007/s00211-011-0414-z
- Gabriel N. Gatica and Francisco-Javier Sayas, An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods, Math. Comp. 75 (2006), no. 256, 1675–1696. MR 2240630, DOI 10.1090/S0025-5718-06-01864-3
- Hou De Han, A new class of variational formulations for the coupling of finite and boundary element methods, J. Comput. Math. 8 (1990), no. 3, 223–232. MR 1299224
- George C. Hsiao and Wolfgang L. Wendland, Boundary integral equations, Applied Mathematical Sciences, vol. 164, Springer-Verlag, Berlin, 2008. MR 2441884, DOI 10.1007/978-3-540-68545-6
- Claes Johnson and J.-Claude Nédélec, On the coupling of boundary integral and finite element methods, Math. Comp. 35 (1980), no. 152, 1063–1079. MR 583487, DOI 10.1090/S0025-5718-1980-0583487-9
- William McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000. MR 1742312
- Salim Meddahi, Francisco-Javier Sayas, and Virginia Selgás, Nonsymmetric coupling of BEM and mixed FEM on polyhedral interfaces, Math. Comp. 80 (2011), no. 273, 43–68. MR 2728971, DOI 10.1090/S0025-5718-2010-02401-9
- G. Of, G. J. Rodin, O. Steinbach, and M. Taus, Coupling of discontinuous Galerkin finite element and boundary element methods, SIAM J. Sci. Comput. 34 (2012), no. 3, A1659–A1677. MR 2970268, DOI 10.1137/110848530
- Francisco-Javier Sayas, The validity of Johnson-Nédélec’s BEM-FEM coupling on polygonal interfaces, SIAM J. Numer. Anal. 47 (2009), no. 5, 3451–3463. MR 2551202, DOI 10.1137/08072334X
- O. Steinbach, A note on the stable one-equation coupling of finite and boundary elements, SIAM J. Numer. Anal. 49 (2011), no. 4, 1521–1531. MR 2831059, DOI 10.1137/090762701
- O. C. Zienkiewicz, D. W. Kelly, and P. Bettess, The coupling of the finite element method and boundary solution procedures, Internat. J. Numer. Methods Engrg. 11 (1977), no. 2, 355–375. MR 451784, DOI 10.1002/nme.1620110210
- O. C. Zienkiewicz, D. W. Kelly, and P. Bettess, Marriage à la mode—the best of both worlds (finite elements and boundary integrals), Energy methods in finite element analysis, Wiley Ser. Numer. Methods Engrg., Wiley, Chichester, 1979, pp. 81–107. MR 537001
Bibliographic Information
- Norbert Heuer
- Affiliation: Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile
- MR Author ID: 314970
- Email: nheuer@mat.puc.cl
- Francisco-Javier Sayas
- Affiliation: Department of Mathematical Sciences, University of Delaware, Ewing Hall, Newark, Delaware 19711
- MR Author ID: 621885
- Email: fjsayas@udel.edu
- Received by editor(s): November 9, 2011
- Received by editor(s) in revised form: January 18, 2013
- Published electronically: October 30, 2014
- Additional Notes: The first author was partially supported by CONICYT through FONDECYT project 1110324 and Anillo ACT1118 (ANANUM)
The second author was partially supported by NSF grant DMS 1216356 - © Copyright 2014 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 581-598
- MSC (2010): Primary 65N30, 65N38, 65N12, 65N15
- DOI: https://doi.org/10.1090/S0025-5718-2014-02918-9
- MathSciNet review: 3290956