Piecewise $\mathbf {H^1}$ functions and vector fields associated with meshes generated by independent refinements
HTML articles powered by AMS MathViewer
- by Susanne C. Brenner and Li-Yeng Sung;
- Math. Comp. 84 (2015), 1017-1036
- DOI: https://doi.org/10.1090/S0025-5718-2014-02866-4
- Published electronically: August 27, 2014
- PDF | Request permission
Abstract:
We consider piecewise $H^1$ functions and vector fields associated with a class of meshes generated by independent refinements and show that they can be effectively analyzed in terms of the number of refinement levels and the shape regularity of the subdomains that appear in the meshes. We derive Poincaré-Friedrichs inequalities and Korn’s inequalities for such meshes and discuss an application to a discontinuous finite element method.References
- Thomas Apel, Anna-Margarete Sändig, and John R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains, Math. Methods Appl. Sci. 19 (1996), no. 1, 63–85. MR 1365264, DOI 10.1002/(SICI)1099-1476(19960110)19:1<63::AID-MMA764>3.0.CO;2-S
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- Constantin Băcuţă, Victor Nistor, and Ludmil T. Zikatanov, Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps, Numer. Math. 100 (2005), no. 2, 165–184. MR 2135780, DOI 10.1007/s00211-005-0588-3
- Andrew T. Barker and Susanne C. Brenner, A mixed finite element method for the Stokes equations based on a weakly over-penalized symmetric interior penalty approach, J. Sci. Comput. 58 (2014), no. 2, 290–307. MR 3150260, DOI 10.1007/s10915-013-9733-9
- J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation, SIAM J. Numer. Anal. 7 (1970), 112–124. MR 263214, DOI 10.1137/0707006
- Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise $H^1$ functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306–324. MR 1974504, DOI 10.1137/S0036142902401311
- Susanne C. Brenner, Korn’s inequalities for piecewise $H^1$ vector fields, Math. Comp. 73 (2004), no. 247, 1067–1087. MR 2047078, DOI 10.1090/S0025-5718-03-01579-5
- S. C. Brenner, T. Gudi, L. Owens, and L.-Y. Sung, An intrinsically parallel finite element method, J. Sci. Comput. 42 (2010), no. 1, 118–121. MR 2576367, DOI 10.1007/s10915-009-9318-9
- Susanne C. Brenner, Thirupathi Gudi, and Li-yeng Sung, A posteriori error control for a weakly over-penalized symmetric interior penalty method, J. Sci. Comput. 40 (2009), no. 1-3, 37–50. MR 2511727, DOI 10.1007/s10915-009-9278-0
- Susanne C. Brenner, Luke Owens, and Li-Yeng Sung, A weakly over-penalized symmetric interior penalty method, Electron. Trans. Numer. Anal. 30 (2008), 107–127. MR 2480072
- Susanne C. Brenner, Luke Owens, and Li-Yeng Sung, Higher order weakly over-penalized symmetric interior penalty methods, J. Comput. Appl. Math. 236 (2012), no. 11, 2883–2894. MR 2891371, DOI 10.1016/j.cam.2012.01.025
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR 2373954, DOI 10.1007/978-0-387-75934-0
- Susanne C. Brenner, Kening Wang, and Jie Zhao, Poincaré-Friedrichs inequalities for piecewise $H^2$ functions, Numer. Funct. Anal. Optim. 25 (2004), no. 5-6, 463–478. MR 2106270, DOI 10.1081/NFA-200042165
- Annalisa Buffa and Christoph Ortner, Compact embeddings of broken Sobolev spaces and applications, IMA J. Numer. Anal. 29 (2009), no. 4, 827–855. MR 2557047, DOI 10.1093/imanum/drn038
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75. MR 343661
- Monique Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR 961439, DOI 10.1007/BFb0086682
- Clint Dawson, Shuyu Sun, and Mary F. Wheeler, Compatible algorithms for coupled flow and transport, Comput. Methods Appl. Mech. Engrg. 193 (2004), no. 23-26, 2565–2580. MR 2055253, DOI 10.1016/j.cma.2003.12.059
- Daniele A. Di Pietro and Alexandre Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations, Math. Comp. 79 (2010), no. 271, 1303–1330. MR 2629994, DOI 10.1090/S0025-5718-10-02333-1
- Todd Dupont and Ridgway Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441–463. MR 559195, DOI 10.1090/S0025-5718-1980-0559195-7
- Pierre Grisvard, Elliptic Problems in Non Smooth Domains, Pitman, Boston, 1985.
- Vladimir Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points, Trans. Moscow Math. Soc., pages 227–313, 1967.
- Kent-Andre Mardal and Ragnar Winther, An observation on Korn’s inequality for nonconforming finite element methods, Math. Comp. 75 (2006), no. 253, 1–6. MR 2176387, DOI 10.1090/S0025-5718-05-01783-7
- Sergey A. Nazarov and Boris A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994. MR 1283387, DOI 10.1515/9783110848915.525
- Jindřich Nečas, Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 227584
- J. A. Nitsche, On Korn’s second inequality, RAIRO Anal. Numér. 15 (1981), no. 3, 237–248 (English, with French summary). MR 631678
- Luke Owens, Multigrid methods for weakly over-penalized interior penalty methods, PhD thesis, University of South Carolina, 2007.
- Béatrice Rivière and Vivette Girault, Discontinuous finite element methods for incompressible flows on subdomains with non-matching interfaces, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 25-28, 3274–3292. MR 2220919, DOI 10.1016/j.cma.2005.06.014
- Béatrice Rivière, Mary F. Wheeler, and Vivette Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal. 39 (2001), no. 3, 902–931. MR 1860450, DOI 10.1137/S003614290037174X
Bibliographic Information
- Susanne C. Brenner
- Affiliation: Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803
- Email: brenner@math.lsu.edu
- Li-Yeng Sung
- Affiliation: Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803
- Email: sung@math.lsu.edu
- Received by editor(s): October 30, 2012
- Received by editor(s) in revised form: August 7, 2013
- Published electronically: August 27, 2014
- Additional Notes: This work was supported in part by the National Science Foundation under Grant No. DMS-10-16332.
- © Copyright 2014 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 1017-1036
- MSC (2010): Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-2014-02866-4
- MathSciNet review: 3315498