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COMPUTING π (x) ANALYTICALLY

DAVID J. PLATT

Abstract. We describe a rigorous implementation of the Lagarias and Odlyzko
Analytic Method to evaluate the prime counting function and its use to com-
pute unconditionally the number of primes less than 1024.

1. Introduction

Computing exact values of the function π(x), which counts the number of primes
less than or equal to x, has exercised mathematicians since antiquity. Early methods
involved enumerating all the primes less than the target x (using, for example, the
sieve of Eratosthenes) and then counting them. In 1870 Meissel [12] described a
combinatorial method which he eventually used to manually compute π

(
109

)
[13]

(albeit not quite accurately). The algorithm was subsequently improved by Lehmer
[11], then by Lagarias, Miller and Odlyzko [10] and most recently by Deléglise and
Rivat [7]. In 2007 Oliveira e Silva used the algorithm to compute π

(
1023

)
.

The Prime Number Theorem dictates that all methods reliant on enumerating
the primes must have time complexity of Ω

(
x log−1 x

)
. The latest incarnations of

the combinatorial method achieve O
(
x2/3 log−2 x

)
.

In their 1987 paper [9], Lagarias and Odlyzko described an analytic algorithm
with (in one form) time complexity O

(
x1/2+ε

)
. In 2010 Büthe, Franke, Jost and

Kleinjung announced a value for π
(
1024

)
[5] contingent on the Riemann Hypothesis.

Their approach “is similar to the one described by Lagarias and Odlyzko, but uses
the Weil explicit formula instead of complex curve integrals”. This paper describes
an implementation reverting to Riemann’s explicit formula which we have used to
compute π

(
1024

)
unconditionally.

2. A note on rigour

To many, rigorous computation is an oxymoron, due to potential bugs in hard-
ware, operating systems, compilers and (most likely) the user’s code. Add to this
the chance that a power spike or cosmic ray interaction could scupper even a cor-
rectly written application, and the situation seems hopeless. We do what we rea-
sonably can to minimise such risks including running applications on systems with
ECC memory after testing on hardware from different vendors with different oper-
ating systems and using different compilers.

However, there are certain aspects over which we do have more control. Esti-
mating the rounding error that will accumulate through a complex floating point
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computation is a non-trivial task that we eschew. Rather, we rely on interval arith-
metic (see [14] for a good introduction). Thus, instead of storing a single floating
point approximation, we hold an interval comprising two floating points to bracket
the true value. We then overload the standard operators and functions to handle
such intervals.

Furthermore, we will estimate some quantities by, for example, truncating an
infinite sum. We will need to derive a rigorous bound for the error introduced, but
rather than keep track of such errors manually, we can simply add them to the
interval being evaluated and let the software take over. Indeed, we can in some
circumstances use interval arithmetic to compute such bounds for us.

3. The analytic algorithm

The analytic algorithm relies on Perron’s formula.

Theorem 3.1 (Perron’s formula). Let a(n) be an arithmetic function with Dirichlet
series

g(s) =

∞∑
n=1

a(n)

ns
.

Now if g(s) is absolutely convergent whenever �s > σa, then for c > σa and x > 0
we have ∑

n≤x

∗a(n) =
1

2πi

c+i∞∫
c−i∞

g(s)xsds

s
,

where the ∗ on the summation sign indicates that if x is an integer, then only 1/2
of the a(x) term is included.

Proof. See page 245 of [1] and the subsequent note. �

The relevance of Perron’s formula to the matter at hand comes from the series,
absolutely convergent for �s > 1,

log ζ(s) =

∞∑
n=2

Λ(n)

ns log n
.

Here Λ is the von Mangoldt function so Λ(n)
log n is 1

m at prime powers pm and zero

elsewhere. Define

π∗(x) :=
∑

pm≤x

1

m
,

where if x is a prime power we only take 1/2 of its contribution to the sum. Then
applying Perron’s formula we get for c > 1 and x > 0

(3.1)
∑
n≤x

∗Λ(n)

log n
= π∗(x) =

1

2πi

c+i∞∫
c−i∞

log ζ(s)xsds

s
.

Here we note that, although we can cheaply recover π(x) from π∗(x), the slow rate
of convergence of the integral dooms any attempt to use it in this context.
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At this point, Lagarias and Odlyzko introduce a “suitable” Mellin transform pair

φ(t) and φ̂(s) and derive

(3.2) π∗(x) =
1

2πi

σ+i∞∫
σ−i∞

log ζ(s)φ̂(s)ds+
∑
pm

1

m
[χx(p

m)− φ(pm)] ,

where χx(t) is defined by

χx(t) :=

⎧⎨⎩
1, t < x,
1/2, t = x,
0, t > x.

We note that taking φ̂(s) = xs

s makes φ(t) = χx(t) and we recover (3.1).
Thus estimating π∗(x) now splits into estimating an integral and summing φ(t)

evaluated at prime powers in the vicinity of x.
In his PhD thesis [8] Galway investigated the proposed algorithm and suggested

using the Mellin transform pair

(3.3) φ̂(s) :=
xs

s
exp

(
λ2s2

2

)
and φ(t) :=

1

2
erfc

(
log

(
t
x

)
√
2λ

)
.

Here erfc is the complementary error function

erfc(x) :=
2√
π

∞∫
x

exp
(
−t2

)
dt

and λ is a positive real parameter used to balance the convergence of the integral
with the width of the prime sieve.

Galway showed that φ and φ̂ as defined in (3.3) are indeed “suitable” and, using
arguments based on the uncertainty principle, suggested that they are in some sense
optimal. He also gave a rigorous bound for the error introduced by truncating the
prime sieve to some finite width.

4. Evaluating
1

2πi

σ+i∞∫
σ−i∞

log ζ(s)Φ̂(s)Ds

At this point, we depart from the line taken by Lagarias and Odlyzko. Rather
than attempt to numerically estimate the integral in (3.2), we take an approach
closer to the spirit of Riemann and evaluate it in terms of the non-trivial zeros of
ζ, leading to Theorem 4.7 below.

Before proceeding, we need a couple of lemmas.

Lemma 4.1. The “Round the Pole” lemma. Let f be a meromorphic function with
a simple pole at α with residue R, and let Γ be the semicircular contour counter-
clockwise from α+ ε to α− ε. Then

lim
ε→0+

∫
Γ

f(z)dz = πiR.

Proof. See page 29 of [18]. �
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Lemma 4.2. We have

lim
ε→0+

(log ζ(1 + ε)− log(−ζ(1− ε))) = 0.

Proof.

lim
ε→0+

(log ζ(1 + ε)− log(−ζ(1− ε))) = lim
ε→0+

log
ζ(1 + ε)

−ζ(1− ε)

= lim
ε→0+

log
1/ε+O(1)

1/ε+O(1)
= 0. �

Lemma 4.3. There exists a sequence of Tj → ∞ such that for any σ ∈ [−1, 2] we
have for s = σ + iTj

ζ ′

ζ
(s) = O(log2 Tj).

Proof. Referring to Davenport [6], for any zero β+iγ of ζ with γ large, we note that
there are O(log γ) zeros with imaginary part ∈ [γ − 1, γ + 1] (Corollary (a), page
99). Therefore we can select a Tj within O(1) of γ such that Tj differs from the
imaginary part of any zero by � 1

log Tj
. By (4) on page 99 we have for σ ∈ [−1, 2]∣∣∣∣ζ ′ζ (σ + iTj)

∣∣∣∣ =
∣∣∣∣∣∑

ρ

′ 1

σ + iTj − ρ
+O(log Tj)

∣∣∣∣∣ ,
where the sum is taken over zeros with imaginary part ∈ [Tj − 1, Tj + 1]. There
are O(log Tj) such zeros, each one making a contribution to the sum limited by
O(log Tj) and the result follows. �

Lemma 4.4. For t ∈ R

|log(−ζ(−1 + it))| ≤ 5 + t2.

Proof. By the functional equation

ζ(−1 + it) = ζ(2− it)
Γ
(
2−it
2

)
Γ
(−1+it

2

)π(− 3
2+it).

We then use
(−1+it

2

)
Γ
(−1+it

2

)
= Γ

(
1+it
2

)
so we can apply Stirling’s approximation.

Also, for �s > 1 we have

|log ζ(s)| =
∣∣∣∣∣
∞∑

n=2

Λ(n)

log(n)

1

ns

∣∣∣∣∣ ≤
∞∑
n=2

Λ(n)

log(n)

1

n�s
= log ζ(�s). �

Lemma 4.5.∣∣∣∣∣∣ 1

2πi

−1+i∞∫
−1−i∞

log(−ζ(s))φ̂(s)ds

∣∣∣∣∣∣ ≤
exp

(
λ2

2

)
2πxλ

(
5
√
2π +

2

λ

)
.

Proof. We use Lemma 4.4 and take absolute values, majorising with

exp
(

λ2

2

)
2πx

⎡⎣5 ∞∫
−∞

exp

(
−λ2t2

2

)
dt+

∞∫
−∞

|t| exp
(
−λ2t2

2

)
dt

⎤⎦ ,

where both integrals can be evaluated. �
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Lemma 4.6. Let Φ̂(s) be the unique holomorphic function Φ̂ : C \ R≤0 → C such
that

• Φ̂′(s) = φ̂(s) and

• limt→∞
[
Φ̂(σ + it) + Φ̂(σ − it)

]
= 0 for any fixed real σ.

Then

(1) Φ̂(s)− log s extends to an entire function,

(2) limt→∞ Φ̂(σ + it) = C is purely imaginary and

(3) Φ̂(σ ± it)∓ C is rapidly decreasing as t → ∞.

Proof. To show (1) we define for s 
∈ R≤0

F (s) =

s∫
1

φ̂(z)dz,

where the contour of integration is the straight line from 1 to s. We then define

Φ̂(s) := lim
T→∞

[
F (s)− F (1 + iT ) + F (1− iT )

2

]
and we have

F (s)− log s =

s∫
1

(
φ̂(z)− 1

z

)
dz.

To show (2) we observe that Φ̂(s) = Φ̂(s) and from the definition we have C+C = 0.
To show (3), we take T > 0 and we have

|Φ̂(σ ± iT )∓ C| ≤ xσ

T
exp

(
σ2λ2

2

) ∞∫
T

exp

(
−λ2t2

2

)
dt. �

Theorem 4.7. Let Φ̂(s) be defined as in Lemma 4.6. Then

1

2πi

2+i∞∫
2−i∞

φ̂(s) log ζ(s)ds = Φ̂(1)−
∑
ρ

�Φ̂(ρ)−log(2)+
1

2πi

−1+i∞∫
−1−i∞

φ̂(s) log(−ζ(s))ds.

Proof. We will refer to the contours represented in Figure 1. These contours are:

• Γ1 - the semi-circle clockwise from 1− ε to 1 + ε for ε small and positive.
• Γ2 - the semi-circle clockwise from 1 + ε to 1− ε.
• Γ3 - the horizontal line from 1 + ε to 2.
• Γ4 - the horizontal line from 2 to 1 + ε.
• Γ5 - the vertical line from 2 to 2 + iTj , Tj not the ordinate of a zero of ζ.
• Γ6 - the vertical line from 2− iTj to 2.
• Γ7 - the horizontal line from 2 + iTj to −1 + iTj .
• Γ8 - the horizontal line from −1− iTj to 2− iTj .
• Γ9 - the vertical line from −1 + iTj to −1 + 5

4 i, followed by the clockwise

circular arc centred at −1 to 1
4 .

• Γ10 - the clockwise circular arc centred at −1 from 1
4 to −1− 5

4 i, followed
by the vertical line to −1− iTj .

• Γ11 - the horizontal line from 1
4 to 1− ε.

• Γ12 - the horizontal line from 1− ε to 1
4 .
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�s

�s

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

Γ7

Γ8

Γ9

Γ10

Γ11

Γ12
1
4

−1 −1
2

0 1 3
2

2

−1 + iTj 2 + iTj

−1− iTj 2− iTj

�s = 1
2

Figure 1. Contours to evaluate 1
2πi

2+i∞∫
2−i∞

φ̂(s) log ζ(s)ds

We consider the integrals

(4.1)
1

2πi

∫
(Φ̂(s)− C)

ζ ′(s)

ζ(s)
ds

for the contours Γ1, Γ3, Γ5, Γ7, Γ9 and Γ11 in the upper half plane and

(4.2)
1

2πi

∫
(Φ̂(s) + C)

ζ ′(s)

ζ(s)
ds

for Γ2, Γ4, Γ6, Γ8, Γ10 and Γ12 in the lower half.
We denote the integrals in (4.1) or (4.2) as appropriate along Γn by In and

proceed as follows.
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For I5 and I6 we get

lim
j→∞

(I5 + I6) = lim
j→∞

1

2πi

⎡⎣ ∫
Γ5

(
Φ̂(s)− C

) ζ ′

ζ
(s)ds+

∫
Γ6

(
Φ̂(s) + C

) ζ ′

ζ
(s)ds

⎤⎦
= lim

j→∞

1

2πi

[(
Φ̂(s)− C

)
log ζ(s)

∣∣∣2+iTj

2
+
(
Φ̂(s) + C

)
log ζ(s)

∣∣∣2
2−iTj

]

− 1

2πi

⎡⎢⎣ ∫
Γ5,6

φ̂(s) log ζ(s)ds

⎤⎥⎦
=

1

2πi

⎡⎣2C log ζ(2)−
2+i∞∫

2−i∞

φ̂(s) log ζ(s)ds

⎤⎦ ,

where Γ5,6 denotes the contour Γ5 followed by Γ6.
Considering the contours Γ7 and Γ8, we use Lemma 4.3 and the Gaussian decay

of Φ̂(s)± C from Lemma 4.6 to conclude that

lim
j→∞

(I7 + I8) = lim
j→∞

1

2πi

⎡⎣ ∫
Γ7

(
Φ̂(s)− C

) ζ ′

ζ
(s)ds+

∫
Γ8

(
Φ̂(s) + C

) ζ ′

ζ
(s)ds

⎤⎦
= 0.

Considering I9 and I10 we have

lim
j→∞

(I9 + I10) = lim
j→∞

1

2πi

⎡⎣ ∫
Γ9

(
Φ̂(s)− C

) ζ ′

ζ
(s)ds+

∫
Γ10

(
Φ̂(s) + C

) ζ ′

ζ
(s)ds

⎤⎦
= lim

j→∞

1

2πi

[(
Φ̂(s)− C

)
log(−ζ(s))

∣∣∣1/4
−1+iTj

+
(
Φ̂(s) + C

)
log(−ζ(s))

∣∣∣−1−iTj

1/4

]

− 1

2πi

⎡⎣ ∫
Γ9

φ̂(s) log(−ζ(s))ds+

∫
Γ10

φ̂(s) log(−ζ(s))ds

⎤⎦
= − 1

2πi

⎡⎣ ∫
Γ9,Γ10

φ̂(s) log(−ζ(s))ds+ 2C log (−ζ (1/4))

⎤⎦ ,

where the contour of integration is Γ9 followed by Γ10. Convergence of this integral
is due to Lemma 4.5 and the zero free region of ζ(s) with |s+1| ≤ 5

4 and �s ≥ −1.
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For I11 and I12 we have

I11 + I12 =
1

2πi

⎡⎣ ∫
Γ11

(
Φ̂(s)− C

) ζ ′

ζ
(s)ds+

∫
Γ12

(
Φ̂(s) + C

) ζ ′

ζ
(s)ds

⎤⎦
=

1

2πi

[(
Φ̂(s)− C

)
log(−ζ(s))

∣∣∣1−ε

1/4
+
(
Φ̂(s) + C

)
log(−ζ(s))

∣∣∣1/4
1−ε

]

− 1

2πi

⎡⎣ ∫
Γ11

φ̂(s) log(−ζ(s))ds+

∫
Γ12

φ̂(s) log(−ζ(s))ds

⎤⎦
=

1

2πi
[2C log (−ζ (1/4))− 2C log(−ζ(1− ε))] .

For I1 and I2 we find

I1 + I2 =
1

2πi

⎡⎣ ∫
Γ1

(
Φ̂(s)− C

) ζ ′

ζ
(s)ds+

∫
Γ2

(
Φ̂(s) + C

) ζ ′

ζ
(s)ds

⎤⎦
=

1

2πi

⎡⎣∮ Φ̂(s)
ζ ′(s)

ζ(s)
ds− C

∫
Γ1

ζ ′

ζ
(s)ds+ C

∫
Γ2

ζ ′

ζ
(s)ds

⎤⎦
= Φ̂(1)− C

2πi

⎡⎣∫
Γ1

ζ ′

ζ
(s)ds−

∫
Γ2

ζ ′

ζ
(s)ds

⎤⎦

by Cauchy’s Theorem since the residue of ζ′

ζ (s) at s = 1 is −1.

Finally, for I3 and I4 we get

I3 + I4 =
1

2πi

⎡⎣ ∫
Γ3

(
Φ̂(s)− C

) ζ ′

ζ
(s)ds+

∫
Γ4

(
Φ̂(s) + C

) ζ ′

ζ
(s)ds

⎤⎦
=

1

2πi

[(
Φ̂(s)− C

)
log ζ(s)

∣∣∣2
1+ε

+
(
Φ̂(s) + C

)
log ζ(s)

∣∣∣1+ε

2

]

− 1

2πi

⎡⎣ ∫
Γ3

φ̂(s) log ζ(s)ds+

∫
Γ4

φ̂(s) log ζ(s)ds

⎤⎦
=

1

2πi
[2C log ζ(1 + ε)− 2C log ζ(2)] .
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Now by Cauchy’s Theorem and exploiting the fact that the non-trivial zeros of

ζ occur in complex conjugate pairs, limj→∞
∑12

k=1 Ik =
∑
ρ
�Φ̂(ρ) so we have

∑
ρ

�Φ̂(ρ) = Φ̂(1)− 1

2πi

⎡⎣ 2+i∞∫
2−i∞

φ̂(s) log ζ(s)ds+

∫
Γ9,Γ10

φ̂(s) log(−ζ(s))ds

⎤⎦
+

C

πi
[log ζ(1 + ε)− log(−ζ(1− ε))]

− C

2πi

⎡⎣ ∫
Γ1

ζ ′(s)

ζ(s)
ds−

∫
Γ2

ζ ′(s)

ζ(s)
ds

⎤⎦ .

Now the result follows from taking the limit as ε → 0+ by Lemmas 4.2 and 4.1 and
then straightening the line of integration of the second integral to �s = −1. This

introduces a contribution of log(−ζ (0)) = − log 2 from the pole of φ̂(s) at s = 0
with residue 1. �

Again, if we take φ̂(s) = xs

s , then Φ̂(s) = Ei(log s), where Ei is the exponential
integral and we recover Riemann’s explicit formula

π∗(x) = Ei(log x)−
∑
ρ

Ei(ρ log x)− log 2 +

−1+i∞∫
−1−i∞

log(−ζ(s))xsds

s
.

We truncate the sum over zeros so we need a rigorous bound for the error that
this introduces. We derive such a bound in Appendix A.

The computation of π(x) now reduces to

• enumerating the prime powers near x,
• computing φ(t) at these prime powers,
• locating the non-trivial zeros of ζ to sufficient accuracy and

• evaluating Φ̂ at these zeros (and at 1).

5. The prime sieve and φ(p)

To compute π
(
1024

)
with the zeros at our disposal we need a sieve of width

≈ 6×1015 centred at 1024. We only will discuss locating the primes in that interval,
the prime powers being a trivial task by comparison.

Two basic methods were considered, sieving (necessarily segmented) and a hy-
brid technique described by Galway [8]. The latter proceeds by first eliminating all
y-smooth numbers and then applying a base 2 Fermat primality test to the remain-
der. Given a list of the (few) numbers in our range which are composite, y-rough
and yet still pass the Fermat test, we are done. Our tests suggest that while an
implementation of the Hybrid sieve would not be competitive at height 1024, the
crossover might not be far away.

Our implementation used Atkin and Bernstein’s sieve based on binary quadratic
forms [2] to enumerate the sieving primes (≤ x1/2) which are then used in a seg-
mented version of the sieve of Eratosthenes to delete composites in the target region.

For each sieve segment centred at x0, we output∑
p

1 ,
∑
p

(x0 − p) and
∑
p

(x0 − p)2.
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y

x

y = a3x
3

y = ax

w

aw

a3w
3

E1

E2

Figure 2. Approximating a cubic with a line (Lemma 5.1)

By restricting the sizes of the segments, we can ensure that the entire computation
can be achieved using native 64 bit integer instructions, with the exception of the
third sum which requires a 128 bit addition. However, this represents only a small
performance penalty on modern CPUs. These three terms are then used to form an
approximation to

∑
p φ(p) by the Taylor series. In fact, three terms are not enough

to give us the required precision, so we exploit the following lemma to derive a
linear approximation to the fourth (cubic) term as well.

Lemma 5.1. If we approximate the real cubic y = a3x
3 on the interval x ∈ [−w,w]

where w > 0 with the line y = ax with a = 3a3w
2

4 , then the magnitude of the error

over the interval is ≤ |a3|w3

4 . What is more, in terms of minimising the worst case
error, this line is the best choice of any quadratic.

Proof. We refer to Figure 2. Without loss of generality, take a3 > 0. Since both
a3x

3 and ax are odd, we consider only the interval x ∈ [0, w]. The error E1 is
simply a3w

3 − aw, and E2 is at its maximum where the slopes of the line and the

cubic are equal. This happens at x =
√

a
3a3

so E2 =
√

a3

3a3
−
√

a3

27a3
. The worst

case error follows from setting E1 = E2 and solving for a.

The maximum error occurs 4 times at x ∈ {±w,±
√

a
3a3

}. This means that any

curve which improves on the line must be below the line at x ∈ {−w,
√

a
3a3

} and

above it at x ∈ {w,−
√

a
3a3

}. Thus, such a curve would have to cross the line at

least 3 times, which is not possible for a quadratic. �
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6. Computing Φ̂

The following lemmas give us a means of computing �Φ̂(ρ).

Lemma 6.1. For �s0 
= 0 and h ∈ R

φ̂(s0 + ih) = φ̂(s0) exp
(
ih(s0λ

2 + log(x))
) exp(−λ2h2

2

)
1 + ih

s0

.

Proof. We start with

φ̂(s0 + ih) =
exp

(
λ2(s0+ih)2

2

)
xs0+ih

s0 + ih

and rearrange to get

exp
(

λ2s20
2

)
xs0

s0

exp
(
ih(s0λ

2 + log(x))
)
exp

(
−λ2h2

2

)
1 + ih

s0

. �

Lemma 6.2. Let N ∈ 2Z>0, λ, h > 0 and λh < 1. Then

exp

(
−λ2h2

2

)
=

N
2∑

n=0

(−1)n

n!

(
λ2h2

2

)n

+ EA,

where

|EA| ≤
1(
N
2

)
!

(
λ2h2

2

)N
2

.

Proof. This function is entire, and the restriction on λhmakes the terms alternating
in sign and decreasing. �

Lemma 6.3. Let N ∈ Z>0, R =
∣∣∣ h
s0

∣∣∣ and |h| < |s0|. Then

(
1 +

ih

s0

)−1

=
N∑

n=0

(
−ih

s0

)n

+ EB

with

|EB| ≤
RN

1−R
.

Proof. This function is analytic on the open disk |h| < |s0|, and the missing terms
form a geometric series. �

We can now fix some N ∈ 2Z>0 and multiply these two (degree N) polynomi-
als to yield a single (degree 2N) polynomial in h which we can integrate against
exp(ih(λ2 + log(x))) analytically.

We now start at Φ̂
(
1
2

)
and move up the 1

2 line in small steps. We take the contri-
bution from the highest-used ρ to be zero and bound the error this approximation
introduces.
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7. The computation

To obtain the O
(
x1/2+ε

)
time complexity of Lagarias and Odlyzko’s algorithm,

we should choose the free parameter λ to equate the run times of the sum over
zeros and the sieving elements of the computation. In fact, we biased the run time
towards computing zeros, both to confirm that the RH holds to a height sufficient for
this computation and since this data may have application to future research.1 We
isolated all the zeros of ζ to a height of 30, 610, 046, 000 (103, 800, 788, 359 zeros).
The technique used to locate these zeros is described in [15] but is in essence a
ζ-specific, windowed version of Booker’s algorithm from [4].

We set λ = 6273445730170391× 2−84 (note that this is exactly representable in
an IEEE 754 double precision floating point). We used the first 69, 778, 732, 700
zeros to compute the sum (those to height 20, 950, 046, 000) which in turn dictated
that we sieve a region of width about 6 × 1015. As a consequence, the truncation
error from summing over the zeros and from the sieve were together < 0.989.

With this choice of λ, we have
∣∣∣Φ̂ (

1
2

)∣∣∣ < 3 × 1013, so we need our zeros to be

located to an absolute accuracy of at least 25 decimal places.2 Thus, we are forced
to use multiple precision arithmetic, despite the performance penalty this implies
(up to a factor of 100 compared with the hardware floating point).

As discussed earlier, we use interval arithmetic to manage the accumulation of
rounding errors during the computation, and to this end we have extended Revol
and Rouillier’s MPFI package [16] in the obvious way to handle complex arithmetic.
Adopting interval arithmetic incurs another performance penalty (a factor of about
3 or 4 this time).

The sieving (entirely in integer arithmetic) was performed on 352, 800 segments,
each of width 234 as dictated by memory constraints, further sub-divided to control
the error in approximating φ by the Taylor series. The actual computation of this
Taylor approximation again requires multiple precision interval arithmetic.

The sum over zeros and the prime sieve all parallelise trivially, and we used the
University of Bristol Bluecrystal Phase II cluster to perform all the computations,
consuming approximately 63, 000 CPU hours. In a personal communication Tomás
Oliveira e Silva indicated that computing π

(
1023

)
using the combinatorial method

required about a month on a single computer. Assuming run time asymptotic to
O(x2/3) and O(x1/2) for the combinatorial and analytic algorithms respectively,
the crossover at which this implementation of the analytic algorithm would start
to beat the combinatorial method would be in the region of x = 4 · 1031.

The result of the computation, after adding in the various error terms, was an
interval straddling a single integer, so we have

Theorem 7.1.

π
(
1024

)
= 18, 435, 599, 767, 349, 200, 867, 866.

We note that this agrees with the conditional result of Büthe, Franke, Jost and
Kleinjung.

1To this end, Jonathan Bober has made about the first 36 billion zeros available at [3].
2Our zeros are located to an absolute accuracy of ±2−102, which more than suffices.
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Appendix A. Truncating the sum over zeros

We require a rigorous bound for the error introduced by truncating the sum over
zeros in Theorem 4.7. We proceed as follows.

For t > 0, t not the imaginary part of a zero of ζ, define N(t) to be the number
of zeros of ζ(s) in the critical strip with �s ∈ [0, t].

Lemma A.1. Let t ≥ 2. Then∣∣∣∣N(t)− t

2π
log

(
t

2πe

)
− 7

8

∣∣∣∣ < 0.137 log(t) + 0.443 log log(t) + 1.588.

Proof. See [17], Theorem 19. �

Lemma A.2. For x > 1, T, λ > 0 and σ ∈ [0, 1] define

B(σ, T ) := exp

(
λ2(1− T 2)

2

)[
xσ

T log x
+

1

λ2T 2x

]
.

Then ∣∣∣�Φ̂ (σ + iT )
∣∣∣ ≤ B(σ, T ).

Proof. We integrate along the contour running vertically down from −1 + i∞ to
−1 + iT , then right to σ + iT . For the horizontal contour we have∣∣∣∣∣∣

σ∫
−1

exp
(

λ2(u+iT )2

2

)
u+ iT

xu+iTdu

∣∣∣∣∣∣ ≤
exp

(
λ2(1−T 2)

2

)
T

σ∫
−1

xudu

<
exp

(
λ2(1−T 2)

2

)
T log x

xσ.

For the vertical contour we have∣∣∣∣∣∣
T∫

∞

exp
(

λ2(−1+it)2

2

)
−1 + it

x−1+itdt

∣∣∣∣∣∣ ≤ x−1 exp

(
λ2

2

) ∞∫
T

exp
(

−λ2t2

2

)
t

dt

<
exp

(
λ2

2

)
xT 2

∞∫
T

t exp

(
−λ2t2

2

)
dt

=
exp

(
λ2(1−T 2)

2

)
λ2T 2x

. �

Lemma A.3. Let T > 0, σ ∈ [0, 1] and αT be such that tαT ≥ N(t) for all t ≥ T .
Then∑

�ρ≥T

B(σ,�ρ) ≤ exp

(
λ2(1− T 2)

2

)[
xσ

T log x
+

1

λ2T 2x

] [
λ2T 2 + 2

λ2T 2−αT
−N(T )

]
.

Proof. Referring to Lemma A.2 and by writing kσ := exp
(

λ2

2

) [
xσ

T log x + 1
λ2T 2x

]
,

we can majorise the sum with the Stieltjes integral
∞∫
T

kσ exp

(
−λ2t2

2

)
dN(t).
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We now integrate by parts and majorise N(t) with tαT to obtain

∑
�ρ>T

B(σ,�ρ) ≤ −kσ exp

(
−λ2T 2

2

)
N(T )− kσ

T 2−αT

∞∫
T

λ2t3 exp

(
−λ2t2

2

)
dt

= kσ

[
λ2T 2 + 2

λ2T 2−αT
exp

(
−λ2T 2

2

)
− exp

(
−λ2T 2

2

)
N(T )

]
. �

We note that the αT referred to above can be computed using Lemma A.1.
We now consider the error introduced by truncating our sum over the zeros of ζ.

Let T1 be the height below which we find and use all the zeros, and T2 the height
to which we know the Riemann Hypothesis holds.

Lemma A.4. Let E1 be the real part of the error introduced by ignoring the zeros
with imaginary part of absolute value ∈ [T1, T2] (whose real parts are all known to
be 1

2). Then

|E1| ≤ 2 exp

(
λ2(1− T 2

1 )

2

)[ √
x

T1 log x
+

1

λ2T 2
1 x

][
λ2T 2

1 + 2

λ2T
2−αT1
1

−N(T1)

]
.

Proof. We apply Lemma A.3 with σ = 1
2 and introduce a factor of 2 for the zeros

with negative imaginary part. �

We note that this bound includes all the zeros with imaginary part > T2, but
their contribution will be negligible.

Lemma A.5. Let E2 be the real part of the error introduced by omitting the zeros
with imaginary part 
∈ [−T2, T2] from the main sum (which do not necessarily have
real part = 1

2). Then

|E2| ≤ exp

(
λ2(1− T 2

2 )

2

)[
x+ 1

T2 log x
+

2

λ2T 2
2 x

][
λ2T 2

2 + 2

λ2T
2−αT2
2

−N(T2)

]
.

Proof. We pair each ρ with 1− ρ and take the worst case, which is when one of the
zeros has real part very close to 1. The result then follows from Lemma A.3. �
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