Computing $\pi \left (x\right )$ analytically
HTML articles powered by AMS MathViewer
- by David J. Platt;
- Math. Comp. 84 (2015), 1521-1535
- DOI: https://doi.org/10.1090/S0025-5718-2014-02884-6
- Published electronically: October 3, 2014
- PDF | Request permission
Abstract:
We describe a rigorous implementation of the Lagarias and Odlyzko Analytic Method to evaluate the prime counting function and its use to compute unconditionally the number of primes less than $10^{24}$.References
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 434929
- A. O. L. Atkin and D. J. Bernstein, Prime sieves using binary quadratic forms, Math. Comp. 73 (2004), no. 246, 1023–1030. MR 2031423, DOI 10.1090/S0025-5718-03-01501-1
- Jonathan Bober, Database of zeros of the zeta function, 2014, www.lmfdb.org/zeros/zeta/.
- Andrew R. Booker, Artin’s conjecture, Turing’s method, and the Riemann hypothesis, Experiment. Math. 15 (2006), no. 4, 385–407. MR 2293591
- J. Büthe, Jens Franke, Alexander Jost, and Thorsten Kleinjung, A practical analytic method for calculating $\pi (x)$, to appear.
- Harold Davenport, Multiplicative number theory, 3rd ed., Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000. Revised and with a preface by Hugh L. Montgomery. MR 1790423
- M. Deléglise and J. Rivat, Computing $\pi (x)$: the Meissel, Lehmer, Lagarias, Miller, Odlyzko method, Math. Comp. 65 (1996), no. 213, 235–245. MR 1322888, DOI 10.1090/S0025-5718-96-00674-6
- William Floyd Galway, Analytic computation of the prime-counting function, ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)–University of Illinois at Urbana-Champaign. MR 2706687
- J. C. Lagarias and A. M. Odlyzko, Computing $\pi (x)$: an analytic method, J. Algorithms 8 (1987), no. 2, 173–191. MR 890871, DOI 10.1016/0196-6774(87)90037-X
- J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, Computing $\pi (x)$: the Meissel-Lehmer method, Math. Comp. 44 (1985), no. 170, 537–560. MR 777285, DOI 10.1090/S0025-5718-1985-0777285-5
- D. H. Lehmer, On the exact number of primes less than a given limit, Illinois J. Math. 3 (1959), 381–388. MR 106883
- Meissel, Ueber die Bestimmung der Primzahlenmenge innerhalb gegebener Grenzen, Math. Ann. 2 (1870), no. 4, 636–642 (German). MR 1509683, DOI 10.1007/BF01444045
- Meissel, Berechnung der Menge von Primzahlen, welche innerhalb der ersten Milliarde natürlicher Zahlen vorkommen, Math. Ann. 25 (1885), no. 2, 251–257 (German). MR 1510308, DOI 10.1007/BF01446409
- Ramon E. Moore, Interval analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1966. MR 231516
- David J. Platt, Isolating some non-trivial zeros of zeta, In preparation (2013).
- Nathalie Revol and Fabrice Rouillier, A Library for Arbitrary Precision Interval Arithmetic, 10th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic, and Validated Numerics, 2002.
- Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232. MR 3018, DOI 10.2307/2371291
- The Course Team, Complex Analysis Handbook, The Open University, 1994.
Bibliographic Information
- David J. Platt
- Affiliation: Heilbronn Institute for Mathematical Research, University of Bristol
- MR Author ID: 1045993
- Email: dave.platt@bris.ac.uk
- Received by editor(s): March 26, 2012
- Received by editor(s) in revised form: September 4, 2013
- Published electronically: October 3, 2014
- Additional Notes: This work formed part of the author’s Ph.D. research and he would like to thank Dr. Andrew Booker for his patient supervision. Funding was provided by the Engineering and Physical Sciences Research Council through the University of Bristol and he is grateful to both.
- © Copyright 2014
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 84 (2015), 1521-1535
- MSC (2010): Primary 11Y35; Secondary 11N37, 11N56, 11Y70
- DOI: https://doi.org/10.1090/S0025-5718-2014-02884-6
- MathSciNet review: 3315519