Perfect lattices over imaginary quadratic number fields
HTML articles powered by AMS MathViewer
- by Oliver Braun and Renaud Coulangeon;
- Math. Comp. 84 (2015), 1451-1467
- DOI: https://doi.org/10.1090/S0025-5718-2014-02891-3
- Published electronically: November 20, 2014
- PDF | Request permission
Abstract:
We present an adaptation of Voronoi theory for imaginary quadratic number fields of class number greater than 1. This includes a characterisation of extreme Hermitian forms which is analogous to the classic characterisation of extreme quadratic forms as well as a version of Voronoi’s famous algorithm which may be used to enumerate all perfect Hermitian forms for a given imaginary quadratic number field in dimensions 2 and 3. We also present an application of the algorithm which allows us to determine generators of the general linear group of an $\mathcal {O}_K$-lattice.References
- Avner Ash, Small-dimensional classifying spaces for arithmetic subgroups of general linear groups, Duke Math. J. 51 (1984), no. 2, 459–468. MR 747876, DOI 10.1215/S0012-7094-84-05123-8
- Luigi Bianchi, Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî, Math. Ann. 40 (1892), no. 3, 332–412 (Italian). MR 1510727, DOI 10.1007/BF01443558
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa, The quickhull algorithm for convex hulls, ACM Trans. Math. Software 22 (1996), no. 4, 469–483. MR 1428265, DOI 10.1145/235815.235821
- Renaud Coulangeon, Invariants d’Hermite, théorie de Voronoï et designs sphériques, Habilitation thesis, University of Bordeaux, 2004, available through http://www.math.u-bordeaux1.fr/~rcoulang/synthese.pdf
- Mathieu Dutour Sikirić, Achill Schürmann, and Frank Vallentin, Classification of eight-dimensional perfect forms, Electron. Res. Announc. Amer. Math. Soc. 13 (2007), 21–32. MR 2300003, DOI 10.1090/S1079-6762-07-00171-0
- J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyperbolic space, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Harmonic analysis and number theory. MR 1483315, DOI 10.1007/978-3-662-03626-6
- Dieter Flöge, Zur Struktur der $\textrm {PSL}_{2}$ über einigen imaginär-quadratischen Zahlringen, Math. Z. 183 (1983), no. 2, 255–279 (German). MR 704107, DOI 10.1007/BF01214824
- Michael Hentschel, Aloys Krieg, and Gabriele Nebe, On the classification of even unimodular lattices with a complex structure, Int. J. Number Theory 8 (2012), no. 4, 983–992. MR 2926556, DOI 10.1142/S1793042112500583
- Pierre Humbert, Réduction de formes quadratiques dans un corps algébrique fini, Comment. Math. Helv. 23 (1949), 50–63 (French). MR 31521, DOI 10.1007/BF02565591
- Max Koecher, Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. I, Math. Ann. 141 (1960), 384–432 (German). MR 124527, DOI 10.1007/BF01360255
- Max Koecher, Beiträge zu einer Reduktionstheorie in Positivitätsbereichen. II, Math. Ann. 144 (1961), 175–182 (German). MR 136771, DOI 10.1007/BF01451336
- A. Korkinge and G. Zolotareff, Sur les formes quadratiques positives, Math. Ann. 11 (1877), no. 2, 242–292 (French). MR 1509914, DOI 10.1007/BF01442667
- Jacques Martinet, Perfect lattices in Euclidean spaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 327, Springer-Verlag, Berlin, 2003. MR 1957723, DOI 10.1007/978-3-662-05167-2
- Eduardo R. Mendoza, Cohomology of $\textrm {PGL}_{2}$ over imaginary quadratic integers, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 128, Universität Bonn, Mathematisches Institut, Bonn, 1979. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1979. MR 611515
- Bertrand Meyer, Constantes d’Hermite et théorie de Voronoï, Ph.D.-thesis, University of Bordeaux, 2008.
- Bertrand Meyer, Generalised Hermite constants, Voronoi theory and heights on flag varieties, Bull. Soc. Math. France 137 (2009), no. 1, 127–158 (English, with English and French summaries). MR 2496703, DOI 10.24033/bsmf.2571
- O. Timothy O’Meara, Introduction to quadratic forms, Classics in Mathematics, Springer-Verlag, Berlin, 2000. Reprint of the 1973 edition. MR 1754311
- Jürgen Opgenorth, Dual cones and the Voronoi algorithm, Experiment. Math. 10 (2001), no. 4, 599–608. MR 1881760
- W. Plesken and B. Souvignier, Computing isometries of lattices, J. Symbolic Comput. 24 (1997), no. 3-4, 327–334. Computational algebra and number theory (London, 1993). MR 1484483, DOI 10.1006/jsco.1996.0130
- Alexander D. Rahm and Mathias Fuchs, The integral homology of $\textrm {PSL}_2$ of imaginary quadratic integers with nontrivial class group, J. Pure Appl. Algebra 215 (2011), no. 6, 1443–1472. MR 2769243, DOI 10.1016/j.jpaa.2010.09.005
- Achill Schürmann, Computational geometry of positive definite quadratic forms, University Lecture Series, vol. 48, American Mathematical Society, Providence, RI, 2009. Polyhedral reduction theories, algorithms, and applications. MR 2466406, DOI 10.1090/ulect/048
- Achill Schürmann, Enumerating perfect forms, Quadratic forms—algebra, arithmetic, and geometry, Contemp. Math., vol. 493, Amer. Math. Soc., Providence, RI, 2009, pp. 359–377. MR 2537111, DOI 10.1090/conm/493/09679
- Jean-Pierre Serre, Arbres, amalgames, $\textrm {SL}_{2}$, Astérisque, No. 46, Société Mathématique de France, Paris, 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass. MR 476875
- Christophe Soulé, The cohomology of $\textrm {SL}_{3}(\textbf {Z})$, Topology 17 (1978), no. 1, 1–22. MR 470141, DOI 10.1016/0040-9383(78)90009-5
- William Stein, Modular forms, a computational approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells. MR 2289048, DOI 10.1090/gsm/079
- Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1–77 (1971). MR 284516, DOI 10.1016/0001-8708(71)90027-2
- G. Voronoï, Nouvelles applications des paramètres continus à la théorie des formes quadratiques: 1 Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math 133 (1908), 97-178.
- —, Nouvelles applications des paramètres continus à la théorie des formes quadratiques: 2 recherches sur les paralléloèdres primitifs, première partie, J. Reine Angew. Math. 134 (1908), 198–287.
- Takao Watanabe, On an analog of Hermite’s constant, J. Lie Theory 10 (2000), no. 1, 33–52. MR 1747690
- Takao Watanabe, Fundamental Hermite constants of linear algebraic groups, J. Math. Soc. Japan 55 (2003), no. 4, 1061–1080. MR 2003760, DOI 10.2969/jmsj/1191418764
- Dan Yasaki, Hyperbolic tessellations associated to Bianchi groups, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 385–396. MR 2721434, DOI 10.1007/978-3-642-14518-6_{3}0
Bibliographic Information
- Oliver Braun
- Affiliation: Lehrstuhl D für Mathematik, RWTH Aachen University, Templergraben 64, D-52062 Aachen, Germany
- Email: oliver.braun1@rwth-aachen.de
- Renaud Coulangeon
- Affiliation: Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France, CNRS, IMB, UMR 5251, F-33400 Talence, France
- MR Author ID: 345129
- Email: renaud.coulangeon@math.u-bordeaux1.fr
- Received by editor(s): January 14, 2013
- Received by editor(s) in revised form: May 27, 2013, and September 9, 2013
- Published electronically: November 20, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 1451-1467
- MSC (2010): Primary 11H55, 11Y99; Secondary 11F06
- DOI: https://doi.org/10.1090/S0025-5718-2014-02891-3
- MathSciNet review: 3315516