## Crank-Nicolson finite element discretizations for a two-dimensional linear Schrödinger-type equation posed in a noncylindrical domain

HTML articles powered by AMS MathViewer

- by D. C. Antonopoulou, G. D. Karali, M. Plexousakis and G. E. Zouraris PDF
- Math. Comp.
**84**(2015), 1571-1598 Request permission

## Abstract:

Motivated by the paraxial narrow–angle approximation of the Helmholtz equation in domains of variable topography, we consider an initial- and boundary-value problem for a general Schrödinger-type equation posed on a two space-dimensional noncylindrical domain with mixed boundary conditions. The problem is transformed into an equivalent one posed on a rectangular domain, and we approximate its solution by a Crank–Nicolson finite element method. For the proposed numerical method, we derive an optimal order error estimate in the $L^2$ norm, and to support the error analysis we prove a global elliptic regularity theorem for complex elliptic boundary value problems with mixed boundary conditions. Results from numerical experiments are presented which verify the optimal order of convergence of the method.## References

- Leif Abrahamsson and Heinz-Otto Kreiss,
*The initial-boundary value problem for the Schrödinger equation*, Math. Methods Appl. Sci.**13**(1990), no. 5, 385–390. MR**1078588**, DOI 10.1002/mma.1670130503 - Leif Abrahamsson and Heinz-Otto Kreiss,
*Boundary conditions for the parabolic equation in a range-dependent duct*, J. Acoust. Soc. Amer.**87**(1990), no. 6, 2438–2441. MR**1054995**, DOI 10.1121/1.399089 - Georgios D. Akrivis and Vassilios A. Dougalis,
*Finite difference discretization with variable mesh of the Schrödinger equation in a variable domain*, Bull. Soc. Math. Grèce (N.S.)**31**(1990), 19–28. MR**1108904** - G. D. Akrivis, V. A. Dougalis, and G. E. Zouraris,
*Error estimates for finite difference methods for a wide-angle “parabolic” equation*, SIAM J. Numer. Anal.**33**(1996), no. 6, 2488–2509. MR**1427476**, DOI 10.1137/S0036142994266352 - G. D. Akrivis, V. A. Dougalis, and G. E. Zouraris,
*Finite difference schemes for the “parabolic” equation in a variable depth environment with a rigid bottom boundary condition*, SIAM J. Numer. Anal.**39**(2001), no. 2, 539–565. MR**1860264**, DOI 10.1137/S0036142999367460 - D. C. Antonopoulou,
*Theory and numerical analysis of parabolic approximations*, Ph.D. Thesis, University of Athens, Greece, 2006 (in Greek). - D. C. Antonopoulou, V. A. Dougalis, F. Sturm and G. E. Zouraris,
*Conservative initial-boundary value problems for the wide-angle PE in waveguides with variable bottoms*, Proceedings of the 9th European Conference on Underwater Acoustics (9th EQUA), M. E. Zakharia, D. Cassereau and F. Luppé, eds.**1**, 375–380 (2008). - D. C. Antonopoulou, V. A. Dougalis, and G. E. Zouraris,
*Galerkin methods for parabolic and Schrödinger equations with dynamical boundary conditions and applications to underwater acoustics*, SIAM J. Numer. Anal.**47**(2009), no. 4, 2752–2781. MR**2551145**, DOI 10.1137/070710858 - Dimitra C. Antonopoulou, Vassilios A. Dougalis, and Georgios E. Zouraris,
*A finite difference method for the wide-angle “parabolic” equation in a waveguide with downsloping bottom*, Numer. Methods Partial Differential Equations**29**(2013), no. 4, 1416–1440. MR**3053872**, DOI 10.1002/num.21762 - D. C. Antonopoulou and M. Plexousakis,
*Discontinuous Galerkin methods for the linear Schrödinger equation in non-cylindrical domains*, Numer. Math.**115**(2010), no. 4, 585–608. MR**2658156**, DOI 10.1007/s00211-010-0296-5 - A. Bamberger, B. Engquist, L. Halpern, and P. Joly,
*Parabolic wave equation approximations in heterogenous media*, SIAM J. Appl. Math.**48**(1988), no. 1, 99–128. MR**923293**, DOI 10.1137/0148005 - Susanne C. Brenner and L. Ridgway Scott,
*The mathematical theory of finite element methods*, 3rd ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008. MR**2373954**, DOI 10.1007/978-0-387-75934-0 - V. A. Dougalis, F. Sturm, and G. E. Zouraris,
*On an initial-boundary value problem for a wide-angle parabolic equation in a waveguide with a variable bottom*, Math. Methods Appl. Sci.**32**(2009), no. 12, 1519–1540. MR**2535860**, DOI 10.1002/mma.1097 - Todd Dupont,
*$L^{2}$-estimates for Galerkin methods for second order hyperbolic equations*, SIAM J. Numer. Anal.**10**(1973), 880–889. MR**349045**, DOI 10.1137/0710073 - Lawrence C. Evans,
*Partial differential equations*, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR**1625845** - Fritz John,
*Partial differential equations*, 4th ed., Applied Mathematical Sciences, vol. 1, Springer-Verlag, New York, 1982. MR**831655**, DOI 10.1007/978-1-4684-9333-7 - J.-L. Lions and E. Magenes,
*Problèmes aux limites non homogènes et applications. Vol. 1*, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR**0247243** - F. Sturm,
*Modélisation mathématique et numérique d’ un problème de propagation en acoustique sous-marine: prise en compte d’un environnement variable tridimensionnel*, Thèse de Docteur en Sciences Université de Toulon et du Var, France, 1997. - Fred D. Tappert,
*The parabolic approximation method*, Wave propagation and underwater acoustics (Workshop, Mystic, Conn., 1974), Lecture Notes in Phys., Vol. 70, Springer, Berlin, 1977, pp. 224–287. MR**0475274** - Vidar Thomée,
*Galerkin finite element methods for parabolic problems*, Springer Series in Computational Mathematics, vol. 25, Springer-Verlag, Berlin, 1997. MR**1479170**, DOI 10.1007/978-3-662-03359-3 - Juan Luis Vázquez and Enzo Vitillaro,
*Heat equation with dynamical boundary conditions of reactive type*, Comm. Partial Differential Equations**33**(2008), no. 4-6, 561–612. MR**2424369**, DOI 10.1080/03605300801970960 - G. E. Zouraris,
*Analysis of numerical methods for evolution partial differential equations*, Ph.D. Thesis, University of Crete, Greece, 1995 (in Greek).

## Additional Information

**D. C. Antonopoulou**- Affiliation: Department of Mathematics and Applied Mathematics, University of Crete, P.O. Box 2208, GR-710 03 Heraklion, Crete, Greece – and – Institute of Applied and Computational Mathematics, FORTH, P.O. Box 1527, GR-711 10 Heraklion, Crete, Greece
- Email: danton@tem.uoc.gr
**G. D. Karali**- Affiliation: Department of Mathematics and Applied Mathematics, University of Crete, P.O. Box 2208, GR-710 03 Heraklion, Crete, Greece – and – Institute of Applied and Computational Mathematics, FORTH, P.O. Box 1527, GR-711 10 Heraklion, Crete, Greece
- Email: gkarali@tem.uoc.gr
**M. Plexousakis**- Affiliation: Department of Mathematics and Applied Mathematics, University of Crete, P.O. Box 2208, GR-710 03 Heraklion, Crete, Greece – and – Institute of Applied and Computational Mathematics, FORTH, P.O. Box 1527, GR-711 10 Heraklion, Crete, Greece
- Email: plex@tem.uoc.gr
**G. E. Zouraris**- Email: zouraris@math.uoc.gr
- Received by editor(s): September 1, 2011
- Received by editor(s) in revised form: October 29, 2012, and October 3, 2013
- Published electronically: November 5, 2014
- © Copyright 2014
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**84**(2015), 1571-1598 - MSC (2000): Primary 65M12, 65M15, 65M60
- DOI: https://doi.org/10.1090/S0025-5718-2014-02900-1
- MathSciNet review: 3335884

Dedicated: Dedicated to Professor Vassilios Dougalis on the occasion of his 65th birthday