The intersection of bivariate orthogonal polynomials on triangle patches
HTML articles powered by AMS MathViewer
- by Tom H. Koornwinder and Stefan A. Sauter PDF
- Math. Comp. 84 (2015), 1795-1812 Request permission
Abstract:
In this paper, the intersection of bivariate orthogonal polynomials on triangle patches will be investigated. The result is interesting on its own but also has important applications in the theory of a posteriori error estimation for finite element discretizations with $p$-refinement, i.e., if the local polynomial degree of the test and trial functions is increased to improve the accuracy. A triangle patch is a set of disjoint open triangles whose closed union covers a neighborhood of the common triangle vertex. On each triangle we consider the space of orthogonal polynomials of degree $n$ with respect to the weight function which is the product of the barycentric coordinates. We show that the intersection of these polynomial spaces is the null space. The analysis requires the derivation of subtle representations of orthogonal polynomials on triangles. Up to four triangles have to be considered to identify that the intersection is trivial.References
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308, DOI 10.1002/9781118032824
- I. Babuška and W. C. Rheinboldt, A-posteriori error estimates for the finite element method, Internat. J. Numer. Meth. Engrg. 12 (1978), 1597–1615.
- I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736–754. MR 483395, DOI 10.1137/0715049
- Wolfgang Bangerth and Rolf Rannacher, Adaptive finite element methods for differential equations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2003. MR 1960405, DOI 10.1007/978-3-0348-7605-6
- R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), no. 170, 283–301. MR 777265, DOI 10.1090/S0025-5718-1985-0777265-X
- Randolph E. Bank and Jinchao Xu, Asymptotically exact a posteriori error estimators. II. General unstructured grids, SIAM J. Numer. Anal. 41 (2003), no. 6, 2313–2332. MR 2034617, DOI 10.1137/S0036142901398751
- Peter Binev, Wolfgang Dahmen, and Ron DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), no. 2, 219–268. MR 2050077, DOI 10.1007/s00211-003-0492-7
- Folkmar A. Bornemann, Bodo Erdmann, and Ralf Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996), no. 3, 1188–1204. MR 1393909, DOI 10.1137/0733059
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- Willy Dörfler and Ricardo H. Nochetto, Small data oscillation implies the saturation assumption, Numer. Math. 91 (2002), no. 1, 1–12. MR 1896084, DOI 10.1007/s002110100321
- Moshe Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput. 6 (1991), no. 4, 345–390. MR 1154903, DOI 10.1007/BF01060030
- Charles F. Dunkl and Yuan Xu, Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, vol. 81, Cambridge University Press, Cambridge, 2001. MR 1827871, DOI 10.1017/CBO9780511565717
- J. S. Hesthaven and T. Warburton, Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations, J. Comput. Phys. 181 (2002), no. 1, 186–221. MR 1925981, DOI 10.1006/jcph.2002.7118
- George Em Karniadakis and Spencer J. Sherwin, Spectral/$hp$ element methods for computational fluid dynamics, 2nd ed., Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005. MR 2165335, DOI 10.1093/acprof:oso/9780198528692.001.0001
- Tom Koornwinder, Two-variable analogues of the classical orthogonal polynomials, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Math. Res. Center, Univ. Wisconsin, Publ. No. 35, Academic Press, New York, 1975, pp. 435–495. MR 0402146
- Khamron Mekchay and Ricardo H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs, SIAM J. Numer. Anal. 43 (2005), no. 5, 1803–1827. MR 2192319, DOI 10.1137/04060929X
- Joseph Proriol, Sur une famille de polynomes à deux variables orthogonaux dans un triangle, C. R. Acad. Sci. Paris 245 (1957), 2459–2461 (French). MR 95994
- Sergey Repin, A posteriori estimates for partial differential equations, Radon Series on Computational and Applied Mathematics, vol. 4, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. MR 2458008, DOI 10.1515/9783110203042
- Rob Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269. MR 2324418, DOI 10.1007/s10208-005-0183-0
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, R.I., 1975. MR 0372517
- Rüdiger Verfürth, A posteriori error estimation techniques for finite element methods, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2013. MR 3059294, DOI 10.1093/acprof:oso/9780199679423.001.0001
Additional Information
- Tom H. Koornwinder
- Affiliation: Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, Netherlands
- Email: T.H.Koornwinder@uva.nl
- Stefan A. Sauter
- Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- MR Author ID: 313335
- Email: stas@math.uzh.ch
- Received by editor(s): September 23, 2013
- Received by editor(s) in revised form: November 1, 2013
- Published electronically: December 18, 2014
- © Copyright 2014 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 1795-1812
- MSC (2010): Primary 65N50, 33C50; Secondary 65N15, 65N30, 33C45
- DOI: https://doi.org/10.1090/S0025-5718-2014-02910-4
- MathSciNet review: 3335892