A generalized Hermite constant for imaginary quadratic fields
HTML articles powered by AMS MathViewer
- by Wai Kiu Chan, María Inés Icaza and Emilio A. Lauret;
- Math. Comp. 84 (2015), 1883-1900
- DOI: https://doi.org/10.1090/S0025-5718-2015-02903-2
- Published electronically: January 22, 2015
- PDF | Request permission
Abstract:
We introduce the projective Hermite constant for positive definite binary hermitian forms associated with an imaginary quadratic number field $K$. It is a lower bound for the classical Hermite constant, and these two constants coincide when $K$ has class number one. Using the geometric tools developed by Mendoza and Vogtmann for their study of the homology of the Bianchi groups, we compute the projective Hermite constants for those $K$ whose absolute discriminants are less than 70, and determine the hermitian forms that attain the projective Hermite constants in these cases. A comparison of the projective hermitian constant with some other generalizations of the classical Hermite constant is also given.References
- Ricardo Baeza, Renaud Coulangeon, Maria Ines Icaza, and Manuel O’Ryan, Hermite’s constant for quadratic number fields, Experiment. Math. 10 (2001), no. 4, 543–551. MR 1881755
- R. Coulangeon, M. I. Icaza, and M. O’Ryan, Lenstra’s constant and extreme forms in number fields, Experiment. Math. 16 (2007), no. 4, 455–462. MR 2378486
- Jürgen Elstrodt, Fritz Grunewald, and Jens Mennicke, Zeta-functions of binary Hermitian forms and special values of Eisenstein series on three-dimensional hyperbolic space, Math. Ann. 277 (1987), no. 4, 655–708. MR 901712, DOI 10.1007/BF01457865
- J. Elstrodt, F. Grunewald, and J. Mennicke, Groups acting on hyperbolic space, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. Harmonic analysis and number theory. MR 1483315, DOI 10.1007/978-3-662-03626-6
- M. I. Icaza, Hermite constant and extreme forms for algebraic number fields, J. London Math. Soc. (2) 55 (1997), no. 1, 11–22. MR 1423282, DOI 10.1112/S0024610796004668
- Eduardo R. Mendoza, Cohomology of $\textrm {PGL}_{2}$ over imaginary quadratic integers, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 128, Universität Bonn, Mathematisches Institut, Bonn, 1979. Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1979. MR 611515
- Hannskarl Oberseider, Über das Minimum positiver Hermitescher Formen, Math. Z. 38 (1934), no. 1, 591–632 (German). MR 1545469, DOI 10.1007/BF01170656
- Shin Ohno and Takao Watanabe, Estimates of Hermite constants for algebraic number fields, Comment. Math. Univ. St. Paul. 50 (2001), no. 1, 53–63. MR 1839965
- A. Oppenheim, The minima of positive definite Hermitian binary quadratic forms, Math. Z. 38 (1934), no. 1, 538–545. MR 1545466, DOI 10.1007/BF01170653
- Oskar Perron, Über das Minimum positiver Hermitescher Formen, Math. Z. 36 (1933), no. 1, 148–160 (German). MR 1545336, DOI 10.1007/BF01188614
- M. E. Pohst and M. Wagner, On the computation of Hermite-Humbert constants: the algorithm of Cohn revisited, J. Algebra 322 (2009), no. 3, 936–947. MR 2531231, DOI 10.1016/j.jalgebra.2009.04.037
- Michael E. Pohst and Marcus Wagner, On the computation of Hermite-Humbert constants for real quadratic number fields, J. Théor. Nombres Bordeaux 17 (2005), no. 3, 905–920 (English, with English and French summaries). MR 2212131
- A. Speiser, Über die Minima Hermitescher Formen, J. Reine Angew. Math 167 (1932), 88–97.
- Jeffrey Lin Thunder, Higher-dimensional analogs of Hermite’s constant, Michigan Math. J. 45 (1998), no. 2, 301–314. MR 1637658, DOI 10.1307/mmj/1030132184
- Karen Vogtmann, Rational homology of Bianchi groups, Math. Ann. 272 (1985), no. 3, 399–419. MR 799670, DOI 10.1007/BF01455567
- Takao Watanabe, On an analog of Hermite’s constant, J. Lie Theory 10 (2000), no. 1, 33–52. MR 1747690
- Takao Watanabe, Fundamental Hermite constants of linear algebraic groups, J. Math. Soc. Japan 55 (2003), no. 4, 1061–1080. MR 2003760, DOI 10.2969/jmsj/1191418764
Bibliographic Information
- Wai Kiu Chan
- Affiliation: Department of Mathematics and Computer science, Wesleyan University, Middletown, Connecticut 06459–0128
- MR Author ID: 336822
- Email: wkchan@wesleyan.edu
- María Inés Icaza
- Affiliation: Instituto de Matemática y Física, Universidad de Talca, Casilla 747, Talca, Chile
- Email: icazap@inst-mat.utalca.cl
- Emilio A. Lauret
- Affiliation: FaMAF-CIEM, Universidad Nacional de Córdoba, Ciudad Universitaria 5000, Córdoba, Argentina
- MR Author ID: 1016885
- ORCID: 0000-0003-3729-5300
- Email: elauret@famaf.unc.edu.ar
- Received by editor(s): January 10, 2011
- Received by editor(s) in revised form: July 5, 3013, and October 8, 2013
- Published electronically: January 22, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 1883-1900
- MSC (2010): Primary 11H50, 11H55
- DOI: https://doi.org/10.1090/S0025-5718-2015-02903-2
- MathSciNet review: 3335896