Optimal error estimates of the direct discontinuous Galerkin method for convection-diffusion equations
HTML articles powered by AMS MathViewer
- by Hailiang Liu;
- Math. Comp. 84 (2015), 2263-2295
- DOI: https://doi.org/10.1090/S0025-5718-2015-02923-8
- Published electronically: February 17, 2015
- PDF | Request permission
Abstract:
In this paper, we present the optimal $L^2$-error estimate of $O(h^{k+1})$ for polynomial elements of degree $k$ of the semidiscrete direct discontinuous Galerkin method for convection-diffusion equations. The main technical difficulty lies in the control of the inter-element jump terms which arise because of the convection and the discontinuous nature of numerical solutions. The main idea is to use some global projections satisfying interface conditions dictated by the choice of numerical fluxes so that trouble terms at the cell interfaces are eliminated or controlled. In multi-dimensional case, the orders of $k+1$ hinge on a superconvergence estimate when tensor product polynomials of degree $k$ are used on Cartesian grids. A collection of projection errors in both one- and multi-dimensional cases is established.References
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- Garth A. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31 (1977), no. 137, 45–59. MR 431742, DOI 10.1090/S0025-5718-1977-0431742-5
- J. L. Bona, H. Chen, O. Karakashian, and Y. Xing, Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation, Math. Comp. 82 (2013), no. 283, 1401–1432. MR 3042569, DOI 10.1090/S0025-5718-2013-02661-0
- F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys. 131 (1997), no. 2, 267–279. MR 1433934, DOI 10.1006/jcph.1996.5572
- Carlos Erik Baumann and J. Tinsley Oden, A discontinuous $hp$ finite element method for convection-diffusion problems, Comput. Methods Appl. Mech. Engrg. 175 (1999), no. 3-4, 311–341. MR 1702201, DOI 10.1016/S0045-7825(98)00359-4
- Paul Castillo, An optimal estimate for the local discontinuous Galerkin method, Discontinuous Galerkin methods (Newport, RI, 1999) Lect. Notes Comput. Sci. Eng., vol. 11, Springer, Berlin, 2000, pp. 285–290. MR 1842183, DOI 10.1007/978-3-642-59721-3_{2}3
- Fatih Celiker and Bernardo Cockburn, Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension, Math. Comp. 76 (2007), no. 257, 67–96. MR 2261012, DOI 10.1090/S0025-5718-06-01895-3
- Bernardo Cockburn, Guido Kanschat, Ilaria Perugia, and Dominik Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal. 39 (2001), no. 1, 264–285. MR 1860725, DOI 10.1137/S0036142900371544
- Paul Castillo, Bernardo Cockburn, Ilaria Perugia, and Dominik Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2000), no. 5, 1676–1706. MR 1813251, DOI 10.1137/S0036142900371003
- Paul Castillo, Bernardo Cockburn, Dominik Schötzau, and Christoph Schwab, Optimal a priori error estimates for the $hp$-version of the local discontinuous Galerkin method for convection-diffusion problems, Math. Comp. 71 (2002), no. 238, 455–478. MR 1885610, DOI 10.1090/S0025-5718-01-01317-5
- Yingda Cheng and Chi-Wang Shu, A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives, Math. Comp. 77 (2008), no. 262, 699–730. MR 2373176, DOI 10.1090/S0025-5718-07-02045-5
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Bernardo Cockburn and Clint Dawson, Approximation of the velocity by coupling discontinuous Galerkin and mixed finite element methods for flow problems, Comput. Geosci. 6 (2002), no. 3-4, 505–522. Locally conservative numerical methods for flow in porous media. MR 1956028, DOI 10.1023/A:1021203618109
- Bernardo Cockburn, Suchung Hou, and Chi-Wang Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math. Comp. 54 (1990), no. 190, 545–581. MR 1010597, DOI 10.1090/S0025-5718-1990-1010597-0
- Bernardo Cockburn, Guido Kanschat, and Dominik Schotzau, A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp. 74 (2005), no. 251, 1067–1095. MR 2136994, DOI 10.1090/S0025-5718-04-01718-1
- Bernardo Cockburn, San Yih Lin, and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems, J. Comput. Phys. 84 (1989), no. 1, 90–113. MR 1015355, DOI 10.1016/0021-9991(89)90183-6
- Bernardo Cockburn and Chi-Wang Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp. 52 (1989), no. 186, 411–435. MR 983311, DOI 10.1090/S0025-5718-1989-0983311-4
- Bernardo Cockburn and Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2440–2463. MR 1655854, DOI 10.1137/S0036142997316712
- Yingda Cheng and Chi-Wang Shu, A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives, Math. Comp. 77 (2008), no. 262, 699–730. MR 2373176, DOI 10.1090/S0025-5718-07-02045-5
- Bernardo Cockburn and Chi-Wang Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems, J. Comput. Phys. 141 (1998), no. 2, 199–224. MR 1619652, DOI 10.1006/jcph.1998.5892
- Gregor Gassner, Frieder Lörcher, and Claus-Dieter Munz, A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes, J. Comput. Phys. 224 (2007), no. 2, 1049–1063. MR 2330305, DOI 10.1016/j.jcp.2006.11.004
- Yunqing Huang, Hailiang Liu, and Nianyu Yi, Recovery of normal derivatives from the piecewise $L^2$ projection, J. Comput. Phys. 231 (2012), no. 4, 1230–1243. MR 2876452, DOI 10.1016/j.jcp.2011.10.001
- C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp. 46 (1986), no. 173, 1–26. MR 815828, DOI 10.1090/S0025-5718-1986-0815828-4
- B. van Leer and S. Nomura, Discontinuous Galerkin for Diffusion, Proceedings of 17th AIAA Computational Fluid Dynamics Conference (June 6 2005), AIAA-2005-5108.
- P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Academic Press, New York-London, 1974, pp. 89–123. MR 658142
- Hailiang Liu and Jue Yan, The direct discontinuous Galerkin (DDG) methods for diffusion problems, SIAM J. Numer. Anal. 47 (2008/09), no. 1, 675–698. MR 2475957, DOI 10.1137/080720255
- Hailiang Liu and Jue Yan, The direct discontinuous Galerkin (DDG) method for diffusion with interface corrections, Commun. Comput. Phys. 8 (2010), no. 3, 541–564. MR 2673775, DOI 10.4208/cicp.010909.011209a
- J. Tinsley Oden, Ivo Babuška, and Carlos Erik Baumann, A discontinuous $hp$ finite element method for diffusion problems, J. Comput. Phys. 146 (1998), no. 2, 491–519. MR 1654911, DOI 10.1006/jcph.1998.6032
- Todd E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation, SIAM J. Numer. Anal. 28 (1991), no. 1, 133–140. MR 1083327, DOI 10.1137/0728006
- W. H. Reed and T. R. Hill, Triangular mesh methods for the neutron transport equation, Technical Report Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.
- Gerard R. Richter, An optimal-order error estimate for the discontinuous Galerkin method, Math. Comp. 50 (1988), no. 181, 75–88. MR 917819, DOI 10.1090/S0025-5718-1988-0917819-3
- Béatrice Rivière and Mary F. Wheeler, A discontinuous Galerkin method applied to nonlinear parabolic equations, Discontinuous Galerkin methods (Newport, RI, 1999) Lect. Notes Comput. Sci. Eng., vol. 11, Springer, Berlin, 2000, pp. 231–244. MR 1842177, DOI 10.1007/978-3-642-59721-3_{1}7
- Ch. Schwab, $p$- and $hp$-finite element methods, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1998. Theory and applications in solid and fluid mechanics. MR 1695813
- Mary Fanett Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15 (1978), no. 1, 152–161. MR 471383, DOI 10.1137/0715010
- Yan Xu and Chi-Wang Shu, Error estimates of the semi-discrete local discontinuous Galerkin method for nonlinear convection-diffusion and KdV equations, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37-40, 3805–3822. MR 2340006, DOI 10.1016/j.cma.2006.10.043
- Yan Xu and Chi-Wang Shu, Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations, SIAM J. Numer. Anal. 50 (2012), no. 1, 79–104. MR 2888305, DOI 10.1137/11082258X
- Jue Yan and Chi-Wang Shu, A local discontinuous Galerkin method for KdV type equations, SIAM J. Numer. Anal. 40 (2002), no. 2, 769–791. MR 1921677, DOI 10.1137/S0036142901390378
- Mengping Zhang and Jue Yan, Fourier type error analysis of the direct discontinuous Galerkin method and its variations for diffusion equations, J. Sci. Comput. 52 (2012), no. 3, 638–655. MR 2948711, DOI 10.1007/s10915-011-9564-5
- Qiang Zhang and Chi-Wang Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal. 42 (2004), no. 2, 641–666. MR 2084230, DOI 10.1137/S0036142902404182
- Qiang Zhang and Chi-Wang Shu, Error estimates to smooth solutions of Runge-Kutta discontinuous Galerkin method for symmetrizable systems of conservation laws, SIAM J. Numer. Anal. 44 (2006), no. 4, 1703–1720. MR 2257123, DOI 10.1137/040620382
- Stanley Osher, Riemann solvers, the entropy condition, and difference approximations, SIAM J. Numer. Anal. 21 (1984), no. 2, 217–235. MR 736327, DOI 10.1137/0721016
Bibliographic Information
- Hailiang Liu
- Affiliation: Department of Mathematics, Iowa State University, Ames, Iowa 50010
- Email: hliu@iastate.edu
- Received by editor(s): February 19, 2013
- Received by editor(s) in revised form: August 13, 2013, and December 12, 2013
- Published electronically: February 17, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 2263-2295
- MSC (2010): Primary 35K15, 65M15, 65M60, 76R50
- DOI: https://doi.org/10.1090/S0025-5718-2015-02923-8
- MathSciNet review: 3356026