A still sharper region where $\pi (x)-{\mathrm {li}}(x)$ is positive
HTML articles powered by AMS MathViewer
- by Yannick Saouter, Timothy Trudgian and Patrick Demichel;
- Math. Comp. 84 (2015), 2433-2446
- DOI: https://doi.org/10.1090/S0025-5718-2015-02930-5
- Published electronically: February 12, 2015
- PDF | Request permission
Abstract:
We consider the least number $x$ for which a change of sign of $\pi (x)-\mathrm {li}(x)$ occurs. First, we consider modifications of Lehmanβs method that enable us to obtain better estimates of some error terms. Second, we establish a new smaller upper bound for the first $x$ for which the difference is positive. Third, we use numerical computations to improve the final result.References
- R. J. Backlund, Γber die Nullstellen der Riemannschen Zetafunktion, Acta Math. 41 (1916), no.Β 1, 345β375 (German). MR 1555156, DOI 10.1007/BF02422950
- P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Ph.D. thesis, UniversitΓ© de Limoges, 1998.
- X. Gourdon and P. Demichel, The first $10^{13}$ zeros of the Riemann Zeta function, and zeros computation at very large height. http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e131e24.pdf, 2004.
- Tadej Kotnik, The prime-counting function and its analytic approximations: $\pi (x)$ and its approximations, Adv. Comput. Math. 29 (2008), no.Β 1, 55β70. MR 2420864, DOI 10.1007/s10444-007-9039-2
- R. Sherman Lehman, On the difference $\pi (x)-\textrm {li}(x)$, Acta Arith. 11 (1966), 397β410. MR 202686, DOI 10.4064/aa-11-4-397-410
- J. E. Littlewood, Sur la distribution des nombres premiers, Comptes Rendus 158 (1914), 1869β1872.
- Maple, Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
- D. J. Platt, Computing $\pi (x)$ analytically, http://arxiv.org/abs/1203.5712. See also http//www.lmfdb.org/zeros/zeta, 2012.
- Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$. II, Math. Comp. 30 (1976), no.Β 134, 337β360. MR 457374, DOI 10.1090/S0025-5718-1976-0457374-X
- Yannick Saouter and Patrick Demichel, A sharp region where $\pi (x)-\textrm {li}(x)$ is positive, Math. Comp. 79 (2010), no.Β 272, 2395β2405. MR 2684372, DOI 10.1090/S0025-5718-10-02351-3
- Timothy Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line, Math. Comp. 81 (2012), no.Β 278, 1053β1061. MR 2869049, DOI 10.1090/S0025-5718-2011-02537-8
- J. van de Lune, Unpublished, 2001.
Bibliographic Information
- Yannick Saouter
- Affiliation: Institut Telecom Brest, Department Informatique, CS 83818, 29238 Brest, Cedex 3 France
- Email: Yannick.Saouter@enst-bretagne.fr
- Timothy Trudgian
- Affiliation: The Australian National University, Mathematical Sciences Institute, Building 27, ACTON, ACT 0200 Australia
- MR Author ID: 909247
- Email: timothy.trudgian@anu.edu.au
- Patrick Demichel
- Affiliation: Hewlett-Packard France, 91947 Les Ulis, Cedex France
- Email: patrick.demichel@hp.com
- Received by editor(s): June 11, 2013
- Received by editor(s) in revised form: December 4, 2013
- Published electronically: February 12, 2015
- Additional Notes: The second author was supported in part by ARC Grant DE120100173.
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 2433-2446
- MSC (2010): Primary 11-04, 11A15, 11M26, 11Y11, 11Y35
- DOI: https://doi.org/10.1090/S0025-5718-2015-02930-5
- MathSciNet review: 3356033