## Graded mesh approximation in weighted Sobolev spaces and elliptic equations in 2D

HTML articles powered by AMS MathViewer

- by James H. Adler and Victor Nistor;
- Math. Comp.
**84**(2015), 2191-2220 - DOI: https://doi.org/10.1090/S0025-5718-2015-02934-2
- Published electronically: February 26, 2015
- PDF | Request permission

## Abstract:

We study the approximation properties of some general finite-element spaces constructed using improved graded meshes. In our results, either the approximating function or the function to be approximated (or both) are in a weighted Sobolev space. We consider also the $L^p$-version of these spaces. The finite-element spaces that we define are obtained from*conformally invariant*families of finite elements (no affine invariance is used), stressing the use of elements that lead to higher regularity finite-element spaces. We prove that for a suitable grading of the meshes, one obtains the usual optimal approximation results. We provide a construction of these spaces that does not lead to long, “skinny” triangles. Our results are then used to obtain $L^2$-error estimates and $h^m$-quasi-optimal rates of convergence for the FEM approximation of solutions of strongly elliptic interface/boundary value problems.

## References

- Thomas Apel and Serge Nicaise,
*The finite element method with anisotropic mesh grading for elliptic problems in domains with corners and edges*, Math. Methods Appl. Sci.**21**(1998), no. 6, 519–549. MR**1615426**, DOI 10.1002/(SICI)1099-1476(199804)21:6<519::AID-MMA962>3.3.CO;2-I - Thomas Apel, Anna-Margarete Sändig, and John R. Whiteman,
*Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains*, Math. Methods Appl. Sci.**19**(1996), no. 1, 63–85. MR**1365264**, DOI 10.1002/(SICI)1099-1476(19960110)19:1<63::AID-MMA764>3.0.CO;2-S - Thomas Apel and Joachim Schöberl,
*Multigrid methods for anisotropic edge refinement*, SIAM J. Numer. Anal.**40**(2002), no. 5, 1993–2006. MR**1950630**, DOI 10.1137/S0036142900375414 - Douglas N. Arnold and Richard S. Falk,
*Well-posedness of the fundamental boundary value problems for constrained anisotropic elastic materials*, Arch. Rational Mech. Anal.**98**(1987), no. 2, 143–165. MR**866719**, DOI 10.1007/BF00251231 - Douglas N. Arnold, Richard S. Falk, and Ragnar Winther,
*Finite element exterior calculus, homological techniques, and applications*, Acta Numer.**15**(2006), 1–155. MR**2269741**, DOI 10.1017/S0962492906210018 - Douglas N. Arnold, Richard S. Falk, and Ragnar Winther,
*Finite element exterior calculus: from Hodge theory to numerical stability*, Bull. Amer. Math. Soc. (N.S.)**47**(2010), no. 2, 281–354. MR**2594630**, DOI 10.1090/S0273-0979-10-01278-4 - Ivo Babuška,
*Finite element method for domains with corners*, Computing (Arch. Elektron. Rechnen)**6**(1970), 264–273 (English, with German summary). MR**293858**, DOI 10.1007/bf02238811 - Ivo Babuška and A. K. Aziz,
*Survey lectures on the mathematical foundations of the finite element method*, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York-London, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR**421106** - I. Babuška, R. B. Kellogg, and J. Pitkäranta,
*Direct and inverse error estimates for finite elements with mesh refinements*, Numer. Math.**33**(1979), no. 4, 447–471. MR**553353**, DOI 10.1007/BF01399326 - C. Bacuta, J. H. Bramble, and J. Xu,
*Regularity estimates for elliptic boundary value problems with smooth data on polygonal domains*, J. Numer. Math.**11**(2003), no. 2, 75–94. MR**1987589**, DOI 10.1163/156939503766614117 - Constantin Bacuta, James H. Bramble, and Jinchao Xu,
*Regularity estimates for elliptic boundary value problems in Besov spaces*, Math. Comp.**72**(2003), no. 244, 1577–1595. MR**1986794**, DOI 10.1090/S0025-5718-02-01502-8 - Constantin Băcuţă, Victor Nistor, and Ludmil T. Zikatanov,
*Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps*, Numer. Math.**100**(2005), no. 2, 165–184. MR**2135780**, DOI 10.1007/s00211-005-0588-3 - Markus Berndt, Thomas A. Manteuffel, Stephen F. McCormick, and Gerhard Starke,
*Analysis of first-order system least squares (FOSLS) for elliptic problems with discontinuous coefficients. I*, SIAM J. Numer. Anal.**43**(2005), no. 1, 386–408. MR**2177150**, DOI 10.1137/S0036142903427688 - James H. Bramble and J. Thomas King,
*A finite element method for interface problems in domains with smooth boundaries and interfaces*, Adv. Comput. Math.**6**(1996), no. 2, 109–138 (1997). MR**1431789**, DOI 10.1007/BF02127700 - J. H. Bramble and A. H. Schatz,
*Least squares methods for $2m$th order elliptic boundary-value problems*, Math. Comp.**25**(1971), 1–32. MR**295591**, DOI 10.1090/S0025-5718-1971-0295591-8 - James J. Brannick, Hengguang Li, and Ludmil T. Zikatanov,
*Uniform convergence of the multigrid $V$-cycle on graded meshes for corner singularities*, Numer. Linear Algebra Appl.**15**(2008), no. 2-3, 291–306. MR**2397306**, DOI 10.1002/nla.574 - Susanne C. Brenner and Michael Neilan,
*A $\scr C^0$ interior penalty method for a fourth order elliptic singular perturbation problem*, SIAM J. Numer. Anal.**49**(2011), no. 2, 869–892. MR**2792399**, DOI 10.1137/100786988 - Susanne C. Brenner and L. Ridgway Scott,
*The mathematical theory of finite element methods*, 2nd ed., Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 2002. MR**1894376**, DOI 10.1007/978-1-4757-3658-8 - S. C. Brenner, J. Cui, and L.-Y. Sung,
*Multigrid methods for the symmetric interior penalty method on graded meshes*, Numer. Linear Algebra Appl.**16**(2009), no. 6, 481–501. MR**2522959**, DOI 10.1002/nla.630 - Susanne C. Brenner and Li-Yeng Sung,
*$C^0$ interior penalty methods for fourth order elliptic boundary value problems on polygonal domains*, J. Sci. Comput.**22/23**(2005), 83–118. MR**2142191**, DOI 10.1007/s10915-004-4135-7 - Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick,
*First-order system least squares for second-order partial differential equations. I*, SIAM J. Numer. Anal.**31**(1994), no. 6, 1785–1799. MR**1302685**, DOI 10.1137/0731091 - Long Chen and Chensong Zhang,
*A coarsening algorithm on adaptive grids by newest vertex bisection and its applications*, J. Comput. Math.**28**(2010), no. 6, 767–789. MR**2765915**, DOI 10.4208/jcm.1004-m3172 - Philippe G. Ciarlet,
*The finite element method for elliptic problems*, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR**520174** - P. G. Ciarlet,
*Basic error estimates for elliptic problems*, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 17–351. MR**1115237** - Martin Costabel, Monique Dauge, and Christoph Schwab,
*Exponential convergence of $hp$-FEM for Maxwell equations with weighted regularization in polygonal domains*, Math. Models Methods Appl. Sci.**15**(2005), no. 4, 575–622. MR**2137526**, DOI 10.1142/S0218202505000480 - C. L. Cox and G. J. Fix,
*On the accuracy of least squares methods in the presence of corner singularities*, Comput. Math. Appl.**10**(1984), no. 6, 463–475 (1985). MR**783520**, DOI 10.1016/0898-1221(84)90077-4 - Monique Dauge,
*Elliptic boundary value problems on corner domains*, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR**961439**, DOI 10.1007/BFb0086682 - P. Grisvard,
*Elliptic problems in nonsmooth domains*, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR**775683** - P. Grisvard,
*Singularities in boundary value problems*, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22, Masson, Paris; Springer-Verlag, Berlin, 1992. MR**1173209** - Benqi Guo and Ivo Babuška,
*Regularity of the solutions for elliptic problems on nonsmooth domains in $\mathbf R^3$. I. Countably normed spaces on polyhedral domains*, Proc. Roy. Soc. Edinburgh Sect. A**127**(1997), no. 1, 77–126. MR**1433086**, DOI 10.1017/S0308210500023520 - Johnny Guzmán, Dmitriy Leykekhman, and Michael Neilan,
*A family of non-conforming elements and the analysis of Nitsche’s method for a singularly perturbed fourth order problem*, Calcolo**49**(2012), no. 2, 95–125. MR**2917211**, DOI 10.1007/s10092-011-0047-8 - V. A. Kondrat′ev,
*Boundary value problems for elliptic equations in domains with conical or angular points*, Trudy Moskov. Mat. Obšč.**16**(1967), 209–292 (Russian). MR**226187** - V. A. Kozlov, V. G. Maz′ya, and J. Rossmann,
*Spectral problems associated with corner singularities of solutions to elliptic equations*, Mathematical Surveys and Monographs, vol. 85, American Mathematical Society, Providence, RI, 2001. MR**1788991**, DOI 10.1090/surv/085 - E. Lee, T. A. Manteuffel, and C. R. Westphal,
*Weighted-norm first-order system least squares (FOSLS) for problems with corner singularities*, SIAM J. Numer. Anal.**44**(2006), no. 5, 1974–1996. MR**2263037**, DOI 10.1137/050636279 - E. Lee, T. A. Manteuffel, and C. R. Westphal,
*Weighted-norm first-order system least-squares (FOSLS) for div/curl systems with three dimensional edge singularities*, SIAM J. Numer. Anal.**46**(2008), no. 3, 1619–1639. MR**2391009**, DOI 10.1137/06067345X - Hengguang Li,
*Finite element analysis for the axisymmetric Laplace operator on polygonal domains*, J. Comput. Appl. Math.**235**(2011), no. 17, 5155–5176. MR**2817318**, DOI 10.1016/j.cam.2011.05.003 - Hengguang Li, Anna Mazzucato, and Victor Nistor,
*Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains*, Electron. Trans. Numer. Anal.**37**(2010), 41–69. MR**2777235** - H. Li and J. Ovall,
*A posteriori error estimation of hierarchical type for the Schrödinger operator with inverse square potential*, submitted, 2013. - Akira Mizutani,
*On the finite element method for the biharmonic Dirichlet problem in polygonal domains: quasi-optimal rate of convergence*, Japan J. Indust. Appl. Math.**22**(2005), no. 1, 45–56. MR**2126386**, DOI 10.1007/BF03167475 - Hae-Soo Oh, Christopher Davis, and Jae Woo Jeong,
*Meshfree particle methods for thin plates*, Comput. Methods Appl. Mech. Engrg.**209/212**(2012), 156–171. MR**2877962**, DOI 10.1016/j.cma.2011.10.011 - Geneviève Raugel,
*Résolution numérique par une méthode d’éléments finis du problème de Dirichlet pour le laplacien dans un polygone*, C. R. Acad. Sci. Paris Sér. A-B**286**(1978), no. 18, A791–A794 (French, with English summary). MR**497667** - Ch. Schwab,
*$p$- and $hp$-finite element methods*, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1998. Theory and applications in solid and fluid mechanics. MR**1695813** - E. Stephan,
*Conform and mixed finite element schemes for the Dirichlet problem for the bi-Laplacian in plane domains with corners*, Math. Methods Appl. Sci.**1**(1979), no. 3, 354–382. MR**548946**, DOI 10.1002/mma.1670010305 - Gilbert Strang and George Fix,
*An analysis of the finite element method*, 2nd ed., Wellesley-Cambridge Press, Wellesley, MA, 2008. MR**2743037**

## Bibliographic Information

**James H. Adler**- Affiliation: Department of Mathematics, Tufts University, Medford, Massachusetts 02155
- Email: james.adler@tufts.edu
**Victor Nistor**- Affiliation: Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802 – and – Université de Lorraine, UFR MIM, Ile du Saulcy, CS 50128, 57045 METZ, France
- Email: nistor@math.psu.edu
- Received by editor(s): September 22, 2012
- Received by editor(s) in revised form: September 13, 2013, and December 22, 2013
- Published electronically: February 26, 2015
- Additional Notes: The second author was partially supported by NSF Grants OCI-0749202, DMS-1016556 and ANR-14-CE25-0012-01 (SINGSTAR)
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp.
**84**(2015), 2191-2220 - MSC (2010): Primary 65N30; Secondary 65N50
- DOI: https://doi.org/10.1090/S0025-5718-2015-02934-2
- MathSciNet review: 3356024