Computing arithmetic Kleinian groups
Author:
Aurel Page
Journal:
Math. Comp. 84 (2015), 2361-2390
MSC (2010):
Primary 11F06, 11Y99, 30F40; Secondary 11-04, 16U60, 11R52
DOI:
https://doi.org/10.1090/S0025-5718-2015-02939-1
Published electronically:
March 13, 2015
MathSciNet review:
3356030
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Arithmetic Kleinian groups are arithmetic lattices in $\mathrm {PSL}_2(\mathbb {C})$. We present an algorithm that, given such a group $\Gamma$, returns a fundamental domain and a finite presentation for $\Gamma$ with a computable isomorphism.
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI https://doi.org/10.1006/jsco.1996.0125
- Mikhail Belolipetsky, Tsachik Gelander, Alexander Lubotzky, and Aner Shalev, Counting arithmetic lattices and surfaces, Ann. of Math. (2) 172 (2010), no. 3, 2197–2221. MR 2726109, DOI https://doi.org/10.4007/annals.2010.172.2197
- A. Borel, Commensurability classes and volumes of hyperbolic $3$-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 1–33. MR 616899
- Nicolas Bergeron and Akshay Venkatesh, The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu 12 (2013), no. 2, 391–447. MR 3028790, DOI https://doi.org/10.1017/S1474748012000667
- A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR 1721403
- Ted Chinburg, Eduardo Friedman, Kerry N. Jones, and Alan W. Reid, The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), no. 1, 1–40. MR 1882023
- Capi Corrales, Eric Jespers, Guilherme Leal, and Angel del Río, Presentations of the unit group of an order in a non-split quaternion algebra, Adv. Math. 186 (2004), no. 2, 498–524. MR 2073916, DOI https://doi.org/10.1016/j.aim.2003.07.015
- Frank Calegari and Akshay Venkatesh, A torsion Jacquet–Langlands correspondence, http://arxiv.org/abs/1212.3847.
- U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp. 44 (1985), no. 170, 463–471. MR 777278, DOI https://doi.org/10.1090/S0025-5718-1985-0777278-8
- H. Jacquet and R. P. Langlands, Automorphic forms on ${\rm GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
- R. Kannan, Improved algorithms for integer programming and related lattice problems, Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC ’83, ACM, 1983, pp. 193–206.
- M. Lipyanskiy, A computer-assisted application of Poincaré’s fundamental polyhedron theorem, Preprint available at http://www.math.columbia.edu/~ums/Archive.html, 2002.
- Bernard Maskit, On Poincaré’s theorem for fundamental polygons, Advances in Math. 7 (1971), 219–230. MR 297997, DOI https://doi.org/10.1016/S0001-8708%2871%2980003-8
- Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957
- A. Page, Computing fundamental domains for arithmetic Kleinian groups, Master’s thesis, Université Paris 7, August 2010.
- A. Rahm, (Co)homologies et K-théorie de groupes de Bianchi par des modèles géométriques calculatoires, PhD thesis, Université Joseph-Fourier - Grenoble I, October 2010.
- John G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 149, Springer, New York, 2006. MR 2249478
- Robert Riley, Applications of a computer implementation of Poincaré’s theorem on fundamental polyhedra, Math. Comp. 40 (1983), no. 162, 607–632. MR 689477, DOI https://doi.org/10.1090/S0025-5718-1983-0689477-2
- Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1–77 (1971). MR 284516, DOI https://doi.org/10.1016/0001-8708%2871%2990027-2
- The PARI Group, Bordeaux, PARI/GP, version 2.6.0, 2011, available from http://pari.math.u-bordeaux.fr/.
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949
- John Voight, Computing fundamental domains for Fuchsian groups, J. Théor. Nombres Bordeaux 21 (2009), no. 2, 469–491 (English, with English and French summaries). MR 2541438
- Dan Yasaki, Hyperbolic tessellations associated to Bianchi groups, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 385–396. MR 2721434, DOI https://doi.org/10.1007/978-3-642-14518-6_30
Retrieve articles in Mathematics of Computation with MSC (2010): 11F06, 11Y99, 30F40, 11-04, 16U60, 11R52
Retrieve articles in all journals with MSC (2010): 11F06, 11Y99, 30F40, 11-04, 16U60, 11R52
Additional Information
Aurel Page
Affiliation:
Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France, CNRS, IMB, UMR 5251, F-33400 Talence, France, INRIA, F-33400 Talence, France
Email:
aurel.page@math.u-bordeaux1.fr; a.r.page@warwick.ac.uk
Received by editor(s):
May 31, 2012
Received by editor(s) in revised form:
February 6, 2013, September 20, 2013, and February 2, 2014
Published electronically:
March 13, 2015
Article copyright:
© Copyright 2015
American Mathematical Society