Computing arithmetic Kleinian groups
HTML articles powered by AMS MathViewer
- by Aurel Page PDF
- Math. Comp. 84 (2015), 2361-2390 Request permission
Abstract:
Arithmetic Kleinian groups are arithmetic lattices in $\mathrm {PSL}_2(\mathbb {C})$. We present an algorithm that, given such a group $\Gamma$, returns a fundamental domain and a finite presentation for $\Gamma$ with a computable isomorphism.References
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Mikhail Belolipetsky, Tsachik Gelander, Alexander Lubotzky, and Aner Shalev, Counting arithmetic lattices and surfaces, Ann. of Math. (2) 172 (2010), no. 3, 2197–2221. MR 2726109, DOI 10.4007/annals.2010.172.2197
- A. Borel, Commensurability classes and volumes of hyperbolic $3$-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 1–33. MR 616899
- Nicolas Bergeron and Akshay Venkatesh, The asymptotic growth of torsion homology for arithmetic groups, J. Inst. Math. Jussieu 12 (2013), no. 2, 391–447. MR 3028790, DOI 10.1017/S1474748012000667
- A. Borel and N. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, 2nd ed., Mathematical Surveys and Monographs, vol. 67, American Mathematical Society, Providence, RI, 2000. MR 1721403, DOI 10.1090/surv/067
- Ted Chinburg, Eduardo Friedman, Kerry N. Jones, and Alan W. Reid, The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 30 (2001), no. 1, 1–40. MR 1882023
- Capi Corrales, Eric Jespers, Guilherme Leal, and Angel del Río, Presentations of the unit group of an order in a non-split quaternion algebra, Adv. Math. 186 (2004), no. 2, 498–524. MR 2073916, DOI 10.1016/j.aim.2003.07.015
- Frank Calegari and Akshay Venkatesh, A torsion Jacquet–Langlands correspondence, http://arxiv.org/abs/1212.3847.
- U. Fincke and M. Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis, Math. Comp. 44 (1985), no. 170, 463–471. MR 777278, DOI 10.1090/S0025-5718-1985-0777278-8
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 0401654
- R. Kannan, Improved algorithms for integer programming and related lattice problems, Proceedings of the Fifteenth Annual ACM Symposium on Theory of Computing (New York, NY, USA), STOC ’83, ACM, 1983, pp. 193–206.
- M. Lipyanskiy, A computer-assisted application of Poincaré’s fundamental polyhedron theorem, Preprint available at http://www.math.columbia.edu/~ums/Archive.html, 2002.
- Bernard Maskit, On Poincaré’s theorem for fundamental polygons, Advances in Math. 7 (1971), 219–230. MR 297997, DOI 10.1016/S0001-8708(71)80003-8
- Colin Maclachlan and Alan W. Reid, The arithmetic of hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003. MR 1937957, DOI 10.1007/978-1-4757-6720-9
- A. Page, Computing fundamental domains for arithmetic Kleinian groups, Master’s thesis, Université Paris 7, August 2010.
- A. Rahm, (Co)homologies et K-théorie de groupes de Bianchi par des modèles géométriques calculatoires, PhD thesis, Université Joseph-Fourier - Grenoble I, October 2010.
- John G. Ratcliffe, Foundations of hyperbolic manifolds, 2nd ed., Graduate Texts in Mathematics, vol. 149, Springer, New York, 2006. MR 2249478
- Robert Riley, Applications of a computer implementation of Poincaré’s theorem on fundamental polyhedra, Math. Comp. 40 (1983), no. 162, 607–632. MR 689477, DOI 10.1090/S0025-5718-1983-0689477-2
- Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1–77 (1971). MR 284516, DOI 10.1016/0001-8708(71)90027-2
- The PARI Group, Bordeaux, PARI/GP, version 2.6.0, 2011, available from http://pari.math.u-bordeaux.fr/.
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949
- John Voight, Computing fundamental domains for Fuchsian groups, J. Théor. Nombres Bordeaux 21 (2009), no. 2, 469–491 (English, with English and French summaries). MR 2541438
- Dan Yasaki, Hyperbolic tessellations associated to Bianchi groups, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 6197, Springer, Berlin, 2010, pp. 385–396. MR 2721434, DOI 10.1007/978-3-642-14518-6_{3}0
Additional Information
- Aurel Page
- Affiliation: Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence, France, CNRS, IMB, UMR 5251, F-33400 Talence, France, INRIA, F-33400 Talence, France
- Email: aurel.page@math.u-bordeaux1.fr; a.r.page@warwick.ac.uk
- Received by editor(s): May 31, 2012
- Received by editor(s) in revised form: February 6, 2013, September 20, 2013, and February 2, 2014
- Published electronically: March 13, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 2361-2390
- MSC (2010): Primary 11F06, 11Y99, 30F40; Secondary 11-04, 16U60, 11R52
- DOI: https://doi.org/10.1090/S0025-5718-2015-02939-1
- MathSciNet review: 3356030