
MATHEMATICS OF COMPUTATION
Volume 84, Number 296, November 2015, Pages 3013–3027
http://dx.doi.org/10.1090/mcom/2951

Article electronically published on April 15, 2015

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION

JANKO BÖHM, WOLFRAM DECKER, CLAUS FIEKER, AND GERHARD PFISTER

Abstract. A standard method for finding a rational number from its values
modulo a collection of primes is to determine its value modulo the product of
the primes via Chinese remaindering, and then use Farey sequences for rational
reconstruction. Successively enlarging the set of primes if needed, this method
is guaranteed to work if we restrict ourselves to “good” primes. Depending on
the particular application, however, there may be no efficient way of identifying
good primes.

In the algebraic and geometric applications we have in mind, the final result
consists of an a priori unknown ideal (or module) which is found via a con-
struction yielding the (reduced) Gröbner basis of the ideal. In this context, we
discuss a general setup for modular and, thus, potentially parallel algorithms
which can handle “bad” primes. A new key ingredient is an error tolerant
algorithm for rational reconstruction via Gaussian reduction.

1. Introduction

Rational reconstruction, in conjunction with Chinese remaindering, provides a
standard way of obtaining results over the rational numbers from results in char-
acteristic p > 0. This is of particular use in the design of parallel algorithms and
in situations where the growth of intermediate results matters. Classical applica-
tions are the computation of polynomial greatest common divisors (see [6,11]) and
Gröbner bases (see [2]). The goal of the modular Gröbner basis algorithm presented
in [2] is to compute the Gröbner basis of an ideal already known. That is, the ideal
is given by a finite set of generators. In contrast, there are constructions which
yield a priori unknown ideals by finding their (reduced) Gröbner bases. Prominent
examples are the computation of normalization and the computation of adjoint
curves (see [3, 4]). Here, for the purpose of modularization, we expect that the
respective construction applies to a given set of input data in characteristic zero as
well as to the modular values of the input data. In such a situation, problems may
arise through the presence of “bad” primes of different types.

Usually, a first step to resolve these problems is to show that the bad primes are
“rare”. Then the different types of bad primes are addressed. For example, a prime
for which it is a priori clear that the modular construction does not work will simply
be rejected. Depending on the application, however, there may be bad primes which
can only be detected a posteriori, that is, after the true characteristic zero result
has been found. For such an application, we must ensure that the reconstruction
algorithm used will return the correct rational number even in the presence of bad
primes. In this note, we derive such an algorithm. Based on this algorithm, we

Received by the editor July 16, 2012 and, in revised form, September 27, 2013 and March 24,
2014.

2010 Mathematics Subject Classification. Primary 13P10, 68W10; Secondary 52C05.
Key words and phrases. Rational reconstruction, Farey map.

c©2015 American Mathematical Society

3013

http://www.ams.org/mcom/
http://dx.doi.org/10.1090/mcom/2951

3014 J. BÖHM, W. DECKER, C. FIEKER, AND G. PFISTER

describe a general scheme for computing ideals (or modules) in the algebraic and
geometric applications we have in mind, addressing, in particular, how various types
of bad primes are handled. This scheme has already been successfully used in the
aforementioned papers [3, 4].

To begin, in Section 2, we recall the classical approach to rational reconstruction
which is based on the lifting of modular to rational results by computing Farey
preimages via Euclidean division with remainder. Section 3 contains a short dis-
cussion of the different types of bad primes. In Section 4, we present the new lifting
algorithm which is based on Gaussian reduction, and discuss the resulting error
tolerant reconstruction algorithm. Finally, in Section 5, we present our general
scheme for applications in commutative algebra and algebraic geometry. We finish
by giving an explicit example which involves a bad prime that can only be detected
a posteriori.

To summarize, we focus on the presentation of a general setup for modular
computations based on error tolerant rational reconstruction. We do not discuss
implementation details or performance questions. In fact, for the applications we
have in mind, the time used for rational reconstruction can be neglected in view of
the more involved parts of the respective algorithms.

2. Reconstruction of a single rational number

We describe the reconstruction of a single unknown number x ∈ Q. In practi-
cal applications, this number will be a coefficient of an object to be computed in
characteristic 0 (for example, a vector, polynomial, or Gröbner basis). Here, we
suppose that we are able to verify the correctness of the computed object (in some
applications by a comparably easy calculation, in others by a bound on the size of
the coefficients).

We use the following notation: Given an integer N ≥ 2 and a number x = a
b ∈ Q

with gcd(a, b) = 1 and gcd(b,N) = 1, the value of x modulo N is

xN :=
(a

b

)
N

:= (a+NZ)(b+NZ)−1 ∈ Z/NZ.

We also write x ≡ r mod N if r ∈ Z represents xN .
In what follows, we suppose that in the context of some application, we are given

an algorithm which computes the value of the unknown number x ∈ Q modulo any
prime p, possibly rejecting the prime. For reference purposes, we formulate this in
the black box type Algorithm 1.

Algorithm 1 . Black Box Algorithm x mod p

Input: A prime number p.
Output: false or an integer 0 ≤ s ≤ p− 1 such that x ≡ s mod p.

Assumption: There are only finitely many primes p where the return value is
false.

Once the values of x modulo each prime in a sufficiently large set of primes
P have been computed, we may find x via a lifting procedure consisting of two
steps: First, use Chinese remaindering to obtain the value of x modulo the product
N :=

∏
p∈P p. Second, compute the preimage of this value under the Farey rational

map which is defined as follows.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 3015

For an integer B > 0, set

FB =
{a

b
∈ Q | gcd(a, b) = 1, 0 ≤ a ≤ B, 0 < |b| ≤ B

}
,

and for m ∈ Z/NZ, let

QN,m =
{a

b
∈ Q | gcd(a, b) = 1, gcd(b,N) = 1,

(a

b

)
N

= m
}

be the set of rational numbers whose value modulo N is m. Then QN =
⋃N−1

m=0QN,m

is a subring of Q with identity. If B is an integer with B ≤
√
(N − 1)/2, then the

Farey map,

ϕB,N : FB ∩QN → Z/NZ,
a

b
�→

(a

b

)
N
,

is well defined and injective (but typically not surjective). To obtain the injective
map with the largest possible image for a given N , we tacitly suppose in what
follows that B is chosen as large as possible for N .

Algorithm 2 will return ϕ−1
B,N (r) if r is in the image of the Farey map, and false

otherwise (see, for example, [5, 10–12]).

Algorithm 2 . Farey Preimage

Input: Integers N ≥ 2 and 0 ≤ r ≤ N − 1.
Output: false or a rational number a

b with gcd(a, b) = 1, gcd(b,N) = 1, a
b ≡

r mod N , 0 ≤ a ≤
√
(N − 1)/2, 0 < |b| ≤

√
(N − 1)/2.

1: (a0, b0) := (N, 0), (a1, b1) := (r, 1), i := −1
2: while 2a2i+2 > N − 1 do
3: i := i+ 1
4: divide ai by ai+1 to find qi, ai+2, bi+2 such that

(ai, bi) = qi(ai+1, bi+1) + (ai+2, bi+2)

and 0 ≤ ai+2 < ai+1

5: if 2b2i+2 ≤ N − 1 and gcd(ai+2, bi+2) = 1 then
6: return ai+2

bi+2

7: return false

Combining Algorithm 2 with Chinese remaindering as indicated above, we get
the classical reconstruction Algorithm 3.

Note that Algorithm 3 works correctly since we suppose that our Black Box Al-
gorithm 1 either returns false or a correct answer. For most applications, however,
there exist primes p which are bad in the sense that the algorithm under consider-
ation returns a wrong answer modulo p which can only be detected a posteriori. In
this note, we show that if there are only finitely many such primes, they can just
be ignored. More precisely, we show that in Algorithm 3, we may call the black
box type Algorithm 4 instead of Algorithm 1, provided we then call the lifting
Algorithm 5 from Section 4 instead of Algorithm 2.

3016 J. BÖHM, W. DECKER, C. FIEKER, AND G. PFISTER

Algorithm 3 . Reconstruction of a Rational Number

Input: Algorithm 1 and a way to verify that a computed number equals x.
Output: x.
1: N := 1, r := 0
2: p := 2
3: loop
4: let s be the return value of Algorithm 1 applied to p
5: if s = false then
6: continue with Step 13
7: find 1 = eN + fp and set r := rfp+ seN , N := Np
8: let y be the return value of Algorithm 2 applied to N and r
9: if y = false then

10: continue with step 13
11: if y = x then
12: return y
13: p :=NextPrime(p)

Algorithm 4 . Black Box Algorithm x mod p With Errors

Input: A prime number p.
Output: false or an integer 0 ≤ s ≤ p− 1.

Assumption: There are only finitely many primes p where the return value is
either false or satisfies x 	≡ s mod p.

3. Types of bad primes for modular algorithms

In this section, we suppose that we are given an algorithm implementing a con-
struction which applies in any characteristic, together with a set of input data over
the rationals.

We call a prime p good for the given algorithm and input data if the algorithm
applied to the modulo p values of the input returns the reduction of the character-
istic zero result. Otherwise, the prime is called bad. In what follows, to make the
discussion in the subsequent sections more clear, we specify various types of bad
primes and describe their influence on the design of algorithms.

A prime p is bad of type-1 if the modulo p reduction of the characteristic zero
input is either not defined or for obvious reasons not a valid input for the algorithm.
For example, if the input is a polynomial, type-1 primes arise from prime factors of
a denominator of a coefficient. Type-1 primes are harmless with regard to rational
reconstruction as they can be detected and, thus, rejected from the beginning, at
no additional cost.

For a bad prime p of type-2, it turns out only in the course of the construction
that the computation in characteristic p cannot be carried through. For example,
an algorithm for inverting a matrix will not work for a prime dividing the deter-
minant. Since, typically, the determinant is not known, the failure will only turn
out eventually. Type-2 primes waste computation time, but with regard to rational
reconstruction they are detected before the Chinese remainder step and do, thus,
not influence the final lifting.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 3017

Consider an invariant whose characteristic zero value coincides with the charac-
teristic p value for all good primes p, and suppose that this value is known a priori.
Moreover, assume that the algorithm computes this invariant for a prime p at some
point of the construction. Then p is bad of type-3 if the value in characteristic p
differs from the expected one. Like type-2 primes, bad primes of type-3 waste com-
putation time for computing modular results which will then be discarded, but do
not influence the final lifting. Examples of possible invariants are the dimension or
the degree or of a variety. Note that the computation of an invariant for detecting
a type-3 prime may be expensive. Dropping the computation of the invariant in
the design of the algorithm, if possible, will turn a type-3 prime into a prime of
different type. This includes primes of type-5 below.

Now suppose that some invariant associated to the modular output is computed
by the algorithm, and that the a priori unknown characteristic zero value of this
invariant coincides with the characteristic p value for all good primes p. Then a
prime is bad of type-4 if this invariant does not have the correct value. Such a prime
cannot be detected a priori. However, if there are only finitely many such primes,
they can be eliminated with arbitrarily high probability by a majority vote over
several primes. Type-4 bad primes may occur, for example, in modular Gröbner
basis computations, where we use the set of minimal generators of the leading ideal
as an invariant for voting. Handling type-4 primes is expensive not only since we
waste computation time, but also since we have to store the modular results for
the majority vote. Again, in the setup of Section 5, such primes are eventually
discarded, and then do not enter the Chinese remainder step. Using additional
theoretic results on the invariant, it may be possible to avoid the majority vote.
If, for example, it is known that the invariant is minimal for good primes, then we
may always vote for the smaller result. The degree of a univariate polynomial gcd
is an invariant of this type, likewise the δ-invariant of an algebraic curve.

Bad primes other than those discussed so far are called bad primes of type-5. This
includes primes which cannot be discovered by any known means without knowledge
of the characteristic zero result. Example 5.12 below shows that type-5 bad primes
indeed occur in algebraic geometry. Type-5 bad primes enter the Chinese remainder
step and are, thus, present during the final lifting process. Considering Algorithm
3, calling Black Box Algorithm 4 instead of Algorithm 1, we will be in a situation
where always either Algorithm 2 or the comparison x = y will return false. As a
result, the algorithm will not terminate.

Due to their nature, bad primes hardly ever create a practical problem. Typically,
there are only very few bad primes for a given instance, and these will not be
encountered if the primes used are chosen at random. On the other hand, for some
of the modern algorithms in commutative algebra, we have no theoretical argument
eliminating type-5 bad primes. Hence, we need error tolerant reconstruction, which
ensures termination provided there are only finitely many bad primes.

4. Reconstruction with bad primes

To design our error tolerant reconstruction algorithm, we turn rational recon-
struction into a lattice problem.

To begin with, given an integer N ≥ 2, we define the subset CN ⊆ Z/NZ of
elements applied to which Algorithm 5 below will return a rational number (and
not false). Let CN be the set of all r ∈ Z/NZ such that there are integers u, v ∈ Z

3018 J. BÖHM, W. DECKER, C. FIEKER, AND G. PFISTER

with u ≥ 0, v 	= 0, and gcd(u, v) = 1 which satisfy the following condition:

(1)
there is an integer q ≥ 1 with q|N and such that

u2 + v2 < N
q2 and u ≡ vr mod N

q .

In Lemma 4.2 below, we will prove that the rational number u
v = uq

vq ∈ Q is

uniquely determined by condition (1). Hence, we have a well-defined map

ψN : CN → Q.

Note that the image of the Farey map ϕB,N , with B =
⌊√

(N − 1)/2
⌋
, is con-

tained in CN : If r ∈ im(ϕB,N), then ϕ−1
B,N (r) satisfies condition (1) with q = 1.

Furthermore, ϕ−1
B,N (r) = ψN (r).

Typically, the inclusion im(ϕB,N) ⊆ CN is strict:

Example 4.1. For N = 2 · 13, we have B = 3, hence

im(ϕB,N) =
{
0, 1, 2, 3, 8, 9, 17, 18, 23, 24, 25

}
,

and the rational numbers which can be reconstructed by Algorithm 2 are the ele-
ments of

FB ∩QN =

{
0,±1,±2,±3,±1

3
,±2

3

}
.

On the other hand,

CN = {r | 0 ≤ r ≤ 25, r 	= 5, 21} ,
and Algorithm 5 will reconstruct the rational numbers in

ψN (CN) =

{
0,±1,±2,±3,±4,±1

2
,±1

3
,±2

3
,±4

3

}
.

Note that the denominator of 1
2 = ψN (7) = ψN (20) is not coprime to N . In both

cases, q = 2: We have 1 ≡ 2 · 7 mod 13 and 1 ≡ 2 · 20 mod 13.

Now, fix 0 ≤ r ≤ N − 1 such that r ∈ CN , and consider the lattice Λ = ΛN,r :=
〈(N, 0), (r, 1)〉 of discriminant N . Let u, v, q correspond to r as in condition (1).
Then (uq, vq) ∈ ΛN,r.

Lemma 4.2. With notation as above, all (x, y) ∈ Λ with x2+y2 < N are collinear.
That is, they define the same rational number x

y .

Proof. Let λ = (x, y), μ = (c, d) ∈ Λ be vectors with x2 + y2, c2 + d2 < N . Then
yμ−dλ = (yc−xd, 0) ∈ Λ, so N |(yc−xd). Since |yc−xd| < N , by Cauchy–Schwarz,
we get yc = xd, as claimed. �

Next, consider integers N ′,M ≥ 2, with gcd(M,N ′) = 1, and such that N =
N ′M . Let a ≥ 0, b 	= 0 be integers such that gcd(b,N ′) = 1, and let a ≡ bs mod N ′,
with 0 ≤ s ≤ N ′ − 1. Let 0 ≤ t ≤ M − 1 be another integer, and let 0 ≤ r ≤ N − 1
be the Chinese remainder lift satisfying r ≡ s mod N ′ and r ≡ t mod M . In
practical applications, we think of N ′ and M as the product of good and bad
primes, respectively. By the following lemma, Algorithm 5 below applied to N
and r will return a/b independently of the possibly “wrong result” t, provided that
M
 N ′.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 3019

Lemma 4.3. With notation as above, suppose that (a2 + b2)M < N ′. Then, for
all (x, y) ∈ Λ = 〈(N, 0), (r, 1)〉 with (x2+ y2) < N , we have x

y = a
b . Furthermore, if

gcd(a, b) = 1 and (x, y) is a shortest nonzero vector in Λ, we also have gcd(x, y)|M .

Proof. From a ≡ bs mod N ′, we get a − bs = k1N
′ for some k1. Moreover, s ≡

r mod N ′ gives r = s + k2N
′. Now (aM, bM) − bM(r, 1) = (aM − brM, 0) and

aM − brM = M(a− br) = M(a− b(s+k2N
′)) = M(a− bs)−k2bN = k1N −k2bN ,

thus (aM, bM) ∈ Λ. Since (a2 + b2)M < N ′, Lemma 4.2 gives a
b = aM

bM = x
y for all

(x, y) ∈ Λ such that (x2 + y2) < N .
For the second statement, write A := (aM, bM) and X := (x, y). By Lemma 4.2,

there is a λ = s
t ∈ Q, with gcd(s, t) = 1, and such that λX = A. The Euclidean

Algorithm gives integers e, f with et+ sf = 1, hence

X

t
= (et+ sf)

X

t
= eX + fA ∈ Λ.

Since X is a shortest vector in the lattice, it follows that t = ±1, hence A = ±sX.
Since gcd(a, b) = 1, we conclude that gcd(x, y)|M . �

The use of Lemma 4.3 is twofold. From a theoretical point of view, it allows us
to ignore type-5 bad primes in the design of modular algorithms—as long as there
are only finitely many of them. This makes the design of modular algorithms much
simpler. From a practical point of view, it allows us to avoid expensive computations
of invariants to eliminate bad primes of any type. Moreover, factorizing the gcd
of the components of a shortest lattice element can help us to identify bad primes
(see Example 4.5 below).

Lemma 4.3 yields the correctness of both the new lifting Algorithm 5 and the
resulting reconstruction Algorithm 3, calling Black Box Algorithm 4 instead of
Algorithm 1, and lifting Algorithm 5 instead of Algorithm 2. In applications, the
termination can be based either on the knowledge of a priori bounds on the height
of x

y or on an a posteriori verification of the result. It should be mentioned that

both methods are used: some problems allow for easy verification, while others
yield good bounds.

Remark 4.4. Algorithm 5, which is just a special case of Gaussian reduction, will
always find a shortest vector in the lattice generated by (N, 0) and (r, 1). Moreover,
bi 	= 0 for all i > 0 since in every step the vector (ai, bi) gets shorter and, hence,
cannot be equal to (N, 0).

Even though Algorithm 5 looks more complicated than Algorithm 2, the bit–
complexity of both algorithms is the same: O(log2 N). See the discussion in [9,
Section 3.3]. Experiments show that the runtime actually differs by a small constant
factor, which is strongly dependent on the specific implementation.

In most applications, as described in Section 5, the runtime of the rational re-
construction is negligable compared to that of the total algorithm.

Example 4.5. We reconstruct the rational number 13
12 using the modulus

N = 38885 = 5 · 7 · 11 · 101.

With notation as above, a = 13, b = 12, r = 22684, and the Farey bound is

B =
⌊√

(N − 1)/2
⌋
= 139.

3020 J. BÖHM, W. DECKER, C. FIEKER, AND G. PFISTER

Algorithm 5 . Error Tolerant Lifting

Input: Integers N ≥ 2 and 0 ≤ r ≤ N − 1.
Output: ψN (r) if r ∈ CN and false otherwise.
1: (a0, b0) := (N, 0), (a1, b1) := (r, 1), i := −1
2: repeat
3: i = i+ 1
4: set

qi =

⌊
〈(ai, bi), (ai+1, bi+1)〉

‖(ai+1, bi+1)‖2

⌉

5: set
(ai+2, bi+2) = (ai, bi)− qi(ai+1, bi+1)

6: until a2i+2 + b2i+2 ≥ a2i+1 + b2i+1

7: if a2i+1 + b2i+1 < N then
8: return ai+1

bi+1

9: else
10: return false

Algorithm 2 applied to this data will correctly return 13
12 . Similarly for Algorithm

5 which generates the sequence

(38885, 0) = 2 · (22684, 1) + (−6483,−2),

(22684, 1) = −3 · (−6483,−2) + (3235,−5),

(−6483,−2) = 2 · (3235,−5) + (−13,−12),

(3235,−5) = −134 · (−13,−12) + (1493,−1613).

Now we make bad primes enter the picture. Consider the Chinese remainder
isomorphism

χ : Z/5Z× Z/7Z× Z/11Z× Z/101Z → Z/38885Z.

The preimage of r =
(
13
12

)
N

is

χ−1(r) = (4, 4, 2, 60).

That is, r is the solution to the simultaneous congruences

x ≡ 4mod 5,

x ≡ 4mod 7,

x ≡ 2mod 11,

x ≡ 60mod 101.

If we make 101 a bad prime by changing the congruence x ≡ 60mod 101 to x ≡
61mod 101, we obtain

χ(4, 4, 2, 61) = 16524.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 3021

Algorithm 5 then computes

(38885, 0) = 2 · (16524, 1) + (5837,−2),

(16524, 1) = 3 · (5837,−2) + (−987, 7),

(5837,−2) = 6 · (−987, 7) + (−85, 40),

(−987, 7) = 10 · (−85, 40) + (−137, 393).

Hence the output 85
−40 = 17

8 	= 13
12 is not the desired lift. The reason for this is

that 101 is not small enough compared to its cofactor in N . Algorithm 2, on
the other hand, returns false since the reduction process will also terminate with
(85,−40) and these numbers are not coprime. Note that Algorithm 6 in Section 5
below will detect an incorrect lift either by the procedure pTest (with a very high
probability) or the subsequent verification step over the rationals (carried through
only if pTest returns true). As a consequence, in both cases, the set of primes
will be enlarged (without discarding previous results). Eventually, the good primes
will outweigh the bad ones and Algorithm 5, when called from Algorithm 6, will
return the correct lift.

For example, replace the congruence x ≡ 4mod 7 by x ≡ 2mod 7, so that

χ(4, 2, 2, 60) = 464.

Then Algorithm 5 yields

(38885, 0) = 84 · (464, 1) + (−91,−84),

(464, 1) = −3 · (−91,−84) + (191,−251),

and terminates with the correct lift
91

84
=

13

12
.

Algorithm 2, on the other hand, will again return false since the reduction also
terminates with the numbers (91, 84) which are not coprime.

Since

(132 + 122) · 7 < 5 · 11 · 101,
Lemma 4.3 shows that 7 is small enough compared to its cofactor in N . Hence, the
wrong result 2 modulo the bad prime 7 does not influence the result of the lift. In
fact, all other possible congruences modulo 7 will lead to the same output. Note
that the bad prime can be detected as gcd(91, 84, N) = 7. Furthermore, note that
in the example the lifting process involving the bad prime requires fewer steps than
the process relying on good primes only.

5. A setup for applications in algebra and geometry

In this section, we discuss a general computational setup for applications in
commutative algebra and algebraic geometry which requires error tolerance. A
setup of this type occurs, for example, when computing normalization or when
computing adjoint curves. See [3, 4] and Example 5.11 below.

To begin, fix a global monomial ordering > on the monoid of monomials in the
variables X = {X1, . . . , Xn}. Consider the polynomial rings W = Q[X] and, given
an integer N ≥ 2, WN = (Z/NZ)[X]. If T ⊆ W or T ⊆ WN is a set of polynomials,
then denote by LM(T) := {LM(f) | f ∈ T} its set of leading monomials. If f ∈ W
is a polynomial such that N is coprime to any denominator of a coefficient of f ,

3022 J. BÖHM, W. DECKER, C. FIEKER, AND G. PFISTER

then its reduction modulo N is the polynomial fN ∈ WN obtained by mapping each
coefficient x of f to xN as described in Section 2. If H = {h1, . . . , hs} ⊂ W
is a Gröbner basis such that N is coprime to any denominator in any hi, set
HN = {(h1)N , . . . , (hs)N}. If J ⊆ W is any ideal, its reduction modulo N is
the ideal

JN = 〈fN | f ∈ J ∩ Z[X]〉 ⊆ WN .

Notation: From now on, let I ⊂ W be a fixed ideal.

Remark 5.1. For practical purposes, I is given by a set of generators. Fix one such
set f1, . . . , fr. Then we realize the reduction of I modulo a prime p via the following
equality which holds for all but finitely many primes p:

Ip = 〈(f1)p, . . . , (fr)p〉 ⊆ Wp.

More precisely, when running the modular Algorithm 6 described below, we incor-
porate the following: if one of the (fi)p is not defined (that is, p is bad of type-1
for the given set of generators), we reject the prime1. If all (fi)p are defined, we
work with the ideal on the right-hand side instead of Ip. Note that it is possible to
detect primes with Ip 	= 〈(f1)p, . . . , (fr)p〉 (which are hence of type-3). Indeed, Ip
can be found using Gröbner bases (see [1, Cor. 4.4.5] and [2, Lem. 6.1]). However,
we suggest skipping this computation: finitely many bad primes will not influence
the result if we use error tolerant rational reconstruction as in Algorithm 5.

To simplify our presentation in what follows, we will systematically ignore the
primes discussed in Remark 5.1. We suppose that we are given a construction which
associates to I a uniquely determined ideal U(0) ⊆ W , and to each reduction Ip,
with p a prime number, a uniquely determined ideal U(p) ⊆ Wp, where we make
the following assumption:

Assumption: We ask that U(0)p = U(p) for all but finitely many p.

We write G(0) for the uniquely determined reduced Gröbner basis of U(0), and
G(p) for that of U(p). In the applications we have in mind, we wish to construct
the unknown ideal U(0) from a collection of its characteristic p counterparts U(p).
Technically, given a finite set of primes P, we wish to construct G(0) by computing
the G(p), p ∈ P, and lifting the G(p) coefficientwise to characteristic zero. Here,
to identify Gröbner basis elements corresponding to each other, we require that
LM(G(p)) = LM(G(q)) for all p, q ∈ P. This leads to condition (1b) below:

Definition 5.2. With notation as above, we define:

(1) A prime number p is called lucky if the following hold:
(a) U(0)p = U(p) and
(b) LM(G(0)) = LM(G(p)).
Otherwise p is called unlucky.

(2) If P is a finite set of primes, set

N ′ =
∏

p∈P lucky

p and M =
∏

p∈P unlucky

p.

1Note that rescaling to integer coefficients is not helpful: reducing the rescaled generators may
yield the wrong leading ideal. See Remark 5.3.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 3023

Then P is called sufficiently large if

N ′ > (a2 + b2) ·M

for all coefficients a
b of polynomials in G(0) (assume gcd(a, b) = 1).

Note that a prime p violating condition (1a) is of type-5, while (1b) is a type-4
condition.

Remark 5.3. A modular algorithm for the fundamental task of computing Gröbner
bases is presented in [2] and [8]. In contrast to our situation here, where we wish
to find the ideal U(0) by computing its reduced Gröbner basis G(0), Arnold’s
algorithm starts from an ideal which is already given. If p is a prime number, J ⊆ W
is an ideal, H(0) is the reduced Gröbner basis of J , andH(p) is the reduced Gröbner
basis of Jp, then p is lucky for J in the sense of Arnold if LM(H(0)) = LM(H(p)).
It is shown in [2, Thm. 5.12 and 6.2] that if J is homogeneous and p is lucky for
J in this sense, then H(0)p is well defined and equal to H(p). Furthermore, by
[2, Cor. 5.4 and Thm. 5.13], all but finitely many primes are Arnold-lucky for a
homogeneous J . Using weighted homogenization as in the proof of [8, Thm. 2.4],
one shows that these results also hold true in the nonhomogeneous setup.

Example 5.4. Consider the ideal J = 〈∂f∂x ,
∂f
∂y 〉, where f = x5 + y11 + xy9 +

x3y9. The leading terms of the lexicographical Gröbner basis with integral coprime
coefficients are as follows:

264627y39 + . . . ,

12103947791971846719838321886393392913750065060875xy8 − . . . ,

40754032969602177507873137664624218564815033875x4 +

Hence, the Arnold unlucky primes for J are

3, 5, 11, 809, 65179, 531264751, 431051934846786628615463393.

With respect to our notion of lucky as introduced in Definition 5.2(1), we first
observe:

Lemma 5.5. The set of unlucky primes is finite.

Proof. By our general assumption, U(0)p = U(p) for all but finitely many primes
p. Given a prime p such that U(0)p = U(p), we have LM(G(0)) = LM(G(p)) if
p does not divide the denominator of any coefficient of any polynomial occurring
when testing whether G(0) is a Gröbner basis using Buchberger’s criterion. The
result follows. �

The type-5 condition (1a) cannot be checked a priori: We compute G(p) and,
thus, U(p) on our way, but U(0)p is only known to us after G(0) and, thus, U(0)
have been found. However, this is not a problem if we apply error tolerant rational
reconstruction since the finitely many bad primes leading to an ideal U(p) different
from U(0)p will not influence the final result:

Lemma 5.6. If P is a sufficiently large set of primes satisfying condition (1b),
then the reduced Gröbner bases G(p), p ∈ P, lift via Algorithm 5 to the reduced
Gröbner basis G(0).

3024 J. BÖHM, W. DECKER, C. FIEKER, AND G. PFISTER

Proof. By assumption, a prime p ∈ P is lucky if and only if it satisfies condition
(1a). In this case, p is Arnold-lucky for U(0). Hence, as pointed out in Remark 5.3,
G(0)p = G(p). Since we assume that P is sufficiently large, it is then clear from
Lemma 4.3 that the coefficients of the Chinese remainder lift G(N), N =

∏
p∈P ,

have a lift to characteristic zero. By the uniqueness statement of Lemma 4.3, this
lift coincides with G(0). �

Lemma 5.5 guarantees, in particular, that a sufficiently large set P of primes
satisfying condition (1b) exists. So from a theoretical point of view, the idea of
finding G(0) is now as follows: Consider such a set P, compute the reduced Gröbner
bases G(p), p ∈ P, and lift the results to G(0) as described above.

From a practical point of view, we face the problem that we can only test a
posteriori whether P is a sufficiently large set of primes satisfying condition (1b).
However, to remedy the situation with respect to (1b), we can proceed in the
following randomized way:

First, fix an integer t ≥ 1 and choose a set of t primes P at random. Second,
compute GP = {G(p) | p ∈ P}, and use a majority vote with respect to the type-4
condition (1b):

deleteByMajorityVote: Define an equivalence relation on P by setting p ∼
q :⇐⇒ LM(G(p)) = LM(G(q)). Then replace P by an equivalence class of largest
cardinality2, and change GP accordingly.

Now all Gröbner bases in GP have the same set of leading monomials. Hence,
we can apply Algorithm 5 to the coefficients of the Gröbner bases in GP. If this
algorithm returns false at some point, we enlarge the set P by t primes not used
so far, and repeat the whole process. Otherwise, the lifting yields a set of polyno-
mials G ⊂ R. Furthermore, if P is suffciently large, all primes in P satisfy (1b).
However, since we do not know whether P is sufficiently large, a final verification
in characteristic zero is needed. As this may be expensive, especially if G 	= G(0),
we first perform a test in positive characteristic:

pTest: Randomly choose a prime number p /∈ P such that p does not divide the
numerator or denominator of any coefficient occurring in a polynomial in G. Return
true if Gp = G(p), and false otherwise.

If pTest returns false, then P is not sufficiently large (or the extra prime
chosen in pTest is bad). In this case, we enlarge the set P as above and repeat
the process. If pTest returns true, however, then most likely G = G(0). Hence,
it makes sense to verify the result over the rationals. If the verification fails, we
again enlarge P and repeat the process.

We summarize this approach in Algorithm 6 (recall that we ignore the primes
from Remark 5.1 in our presentation).

Remark 5.7. If Algorithm 6 requires more than one round of the loop, we have to
use a weighted cardinality count in deleteByMajorityVote: when enlarging P,
the total weight of the elements already present must be strictly smaller than the
total weight of the new elements. Otherwise, though highly unlikely in practical
terms, it may happen that only unlucky primes are accumulated.

2When computing the cardinality, take Remark 5.7 into account.

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 3025

Algorithm 6 . Reconstruction of an Ideal

Input: An algorithm to compute G(p) from Ip, for each prime p, and a way of
verifying that a given Gröbner basis over Q equals G(0).

Output: The Gröbner basis G(0).
1: choose a list P of random primes
2: GP = ∅
3: loop
4: for p ∈ P do
5: compute G(p) ⊆ Wp

6: GP = GP ∪ {G(p)}
7: (P,GP) = deleteByMajorityVote(P,GP)
8: lift GP to G ⊆ W via Chinese remaindering and Algorithm 5
9: if the lifting succeeds and pTest(I,G,P) then

10: if G = G(0) then
11: return G
12: enlarge P with primes not used so far

Remark 5.8. Our lifting process works since reduced Gröbner bases are uniquely
determined. In practical terms, however, there is often no need to reduce the
Gröbner bases involved: it is only required that the construction associating the
Gröbner bases to I and its reductions yields uniquely determined results.

Remark 5.9. We may allow that the given construction does not work for finitely
many primes p (which are then bad of type-2). In this case, the respective primes
will be rejected.

Remark 5.10. Depending on the particular implementation of the construction,
type-3 primes (in addition to those considered in Remark 5.1) may occur. In such
a situation, it is often cheaper to rely on error tolerance rather than spending
computation time to detect these primes.

Example 5.11. If K is any field, and I ⊆ K[X] is a prime ideal, the normalization
A of the domain A = K[X]/I is the integral closure of A in its field of fractions
Q(A). If K is perfect, the normalization algorithm given in [7] will find a “valid
denominator” d ∈ A and an ideal U ⊆ A such that 1

dU = A ⊆ Q(A). In fact, U
is uniquely determined if we fix d. In practical terms, d and U are a polynomial
and an ideal in K[X], respectively. If K = Q, we can apply the modular version of
the algorithm (see [3]). This version relies on choosing a “universal denominator”
d which is used over the rationals as well as in finite characteristic. Given a prime
number p, it may then happen that Ip is not a prime ideal (a type-2 condition),
that the leading ideal of Ip does not coincide with that of I (a type-3 condition),
that dp is not defined (a type-1 condition), or that dp is not a valid denominator (a
type-2 condition). In accordance with the general setup, the numerator ideal U(p)
is obtained by computing the Gröbner basis G(p), and LM(G(0)) = LM(G(p)) and
U(0)p = U(p) are type-4 and type-5 conditions, respectively.

The normalization algorithm mentioned above in Example 5.11 finds A by suc-
cessively enlarging A in form of an endomorphism ring of a so-called test ideal
J ⊆ A. For practical purposes, the radical of the Jacobian ideal is used for J .
The following example shows that, for the algorithm computing the radical of the

3026 J. BÖHM, W. DECKER, C. FIEKER, AND G. PFISTER

Jacobian, bad primes p exist which satisfy the type-4 condition (1b) but violate
the type-5 condition (1a) in Definition 5.2. In particular, these primes cannot be
eliminated by a majority vote on the leading ideal.

Example 5.12. We construct a sextic curve C = V (I) ⊂ P2
C
, given by an ideal

I = 〈f〉 ⊂ Q[x, y, z], such that 5 is a bad prime of type-5 for computing the radical
of the singular locus of C. The basic idea is to construct a curve which has two
double points in characteristic 0, which coincide when reducing modulo 5, while
one additional double point appears.

For

L = 〈y, x− 4z〉2 ∩ 〈y, x+ 6z〉2 ⊆ Q[x, y, z],

the reduced Gröbner basis with respect to the degree reverse lexicographical order-
ing is

G = {G1, G2, G3} =
{
y2, (x− 4z)(x+ 6z)y, (x− 4z)2(x+ 6z)2

}
.

Note, that both L and

L5 =
〈
y2, (x+ z)2y, (x+ z)4

〉
⊆ F5[x, y, z]

have the same leading semigroup
〈
y2, x2y, x4

〉
.

Writing generators of

M = L5 ∩ 〈y, x− z〉2 ⊂ L5

in terms of the Gröbner basis of L5 yields the representation

M =
〈
y2, (x− z) · (x+ z)2y, (x2 + 3xz + z2) · (x+ z)4

〉
.

Now consider a generic homogeneous element of degree 6 in〈
G1, (x− z) ·G2, (x2 + 3xz + z2) ·G3

〉
⊂ Q[x, y, z].

For practical purposes, a random element will do, for example,

f = x6 + y6 + 7x5z + x3y2z − 31x4z2 − 224x3z3 + 244x2z4 + 1632xz5 + 576z6.

For the ideal I = 〈f〉, the prime 5 is bad of type-5 with respect to the algorithm

I �→
√
I + Jac(I),

where Jac(I) denotes the Jacobian ideal of I: First note, that no coefficient of f is
divisible by 5. In particular, LM(I) =

〈
x6

〉
= LM(I5), so 5 is Arnold-lucky for I.

We compute

U(0) =
√
I + Jac(I) = 〈y, x− 4z〉 ∩ 〈y, x+ 6z〉 ,

U(5) =
√
I5 + Jac(I5) =

〈
y, x2 − z2

〉
= 〈y, x− z〉 ∩ 〈y, x+ z〉 ,

and

U(0)5 =
〈
y, (x+ z)2

〉
.

Hence

LM(U(0)) =
〈
y, x2

〉
= LM(U(5)),

but

U(0)5 	= U(5).

THE USE OF BAD PRIMES IN RATIONAL RECONSTRUCTION 3027

Acknowledgement

The authors would like to thank the referees who made valuable suggestions
which improved the presentation of this paper.

References

[1] W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies
in Mathematics, vol. 3, American Mathematical Society, Providence, RI, 1994. MR1287608
(95g:13025)

[2] E. A. Arnold, Modular algorithms for computing Gröbner bases, J. Symbolic Comput. 35
(2003), no. 4, 403–419, DOI 10.1016/S0747-7171(02)00140-2. MR1976575 (2004c:13044)

[3] J. Böhm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, and S. Steidel, Parallel algorithms
for normalization, J. Symbolic Comput. 51 (2013), 99–114, DOI 10.1016/j.jsc.2012.07.002.
MR3005784

[4] J. Böhm, W. Decker, S. Laplagne, and G. Pfister, Local to global algorithms for the Gorenstein
adjoint ideal of a curve. In preparation.

[5] G. E. Collins and M. J. Encarnación, Efficient rational number reconstruction, J. Symbolic
Comput. 20 (1995), no. 3, 287–297, DOI 10.1006/jsco.1995.1051. MR1378101 (97c:11116)

[6] M. J. Encarnación, Computing GCDs of polynomials over algebraic number fields, J. Symbolic
Comput. 20 (1995), no. 3, 299–313, DOI 10.1006/jsco.1995.1052. MR1378102 (97c:11117)

[7] G.-M. Greuel, S. Laplagne, and F. Seelisch, Normalization of rings, J. Symbolic Comput. 45
(2010), no. 9, 887–901, DOI 10.1016/j.jsc.2010.04.002. MR2661161 (2011m:13012)

[8] N. Idrees, G. Pfister, and S. Steidel, Parallelization of modular algorithms, J. Symbolic Com-
put. 46 (2011), no. 6, 672–684, DOI 10.1016/j.jsc.2011.01.003. MR2781946 (2012b:68331)

[9] P. Q. Nguyen and D. Stehlé, Low-dimensional lattice basis reduction revisited, ACM Trans.
Algorithms 5 (2009), no. 4, Art. 46, 48, DOI 10.1145/1597036.1597050. MR2571909
(2011c:68236)

[10] P. Kornerup and R. T. Gregory, Mapping integers and Hensel codes onto Farey fractions,
BIT 23 (1983), no. 1, 9–20, DOI 10.1007/BF01937322. MR689601 (84b:10015)

[11] P. S. Wang, A p–adic algorithm for univariate partial fractions. Proceedings SYMSAC ’81,
212–217 (1981).

[12] P. S. Wang, M. J. T. Guy, and J. H. Davenport, P–adic reconstruction of rational numbers.
SIGSAM Bull, 2–3 (1982).

Fachbereich Mathematik, Technical University Kaiserslautern, Postfach 3049, 67653

Kaiserslautern, Germany

E-mail address: boehm@mathematik.uni-kl.de

Fachbereich Mathematik, Technical University Kaiserslautern, Postfach 3049, 67653

Kaiserslautern, Germany

E-mail address: decker@mathematik.uni-kl.de

Fachbereich Mathematik, Technical University Kaiserslautern, Postfach 3049, 67653

Kaiserslautern, Germany

E-mail address: fieker@mathematik.uni-kl.de

Fachbereich Mathematik, Technical University Kaiserslautern, Postfach 3049, 67653

Kaiserslautern, Germany

E-mail address: pfister@mathematik.uni-kl.de

http://www.ams.org/mathscinet-getitem?mr=1287608
http://www.ams.org/mathscinet-getitem?mr=1287608
http://www.ams.org/mathscinet-getitem?mr=1976575
http://www.ams.org/mathscinet-getitem?mr=1976575
http://www.ams.org/mathscinet-getitem?mr=3005784
http://www.ams.org/mathscinet-getitem?mr=1378101
http://www.ams.org/mathscinet-getitem?mr=1378101
http://www.ams.org/mathscinet-getitem?mr=1378102
http://www.ams.org/mathscinet-getitem?mr=1378102
http://www.ams.org/mathscinet-getitem?mr=2661161
http://www.ams.org/mathscinet-getitem?mr=2661161
http://www.ams.org/mathscinet-getitem?mr=2781946
http://www.ams.org/mathscinet-getitem?mr=2781946
http://www.ams.org/mathscinet-getitem?mr=2571909
http://www.ams.org/mathscinet-getitem?mr=2571909
http://www.ams.org/mathscinet-getitem?mr=689601
http://www.ams.org/mathscinet-getitem?mr=689601

	1. Introduction
	2. Reconstruction of a single rational number
	3. Types of bad primes for modular algorithms
	4. Reconstruction with bad primes
	5. A setup for applications in algebra and geometry
	Acknowledgement
	References

