Computing algebraic numbers of bounded height
HTML articles powered by AMS MathViewer
- by John R. Doyle and David Krumm;
- Math. Comp. 84 (2015), 2867-2891
- DOI: https://doi.org/10.1090/mcom/2954
- Published electronically: April 1, 2015
- PDF | Request permission
Abstract:
We describe an algorithm which, given a number field $K$ and a bound $B$, finds all the elements of $K$ having relative height at most $B$. Two lists of numbers are computed: one consisting of elements $x\in K$ for which it is known with certainty that $H_K(x)\leq B$, and one containing elements $x$ such that $|H_K(x)-B|<\theta$ for a tolerance $\theta$ chosen by the user. We show that every element of $K$ whose height is at most $B$ must appear in one of the two lists.References
- Alexander Barvinok and James E. Pommersheim, An algorithmic theory of lattice points in polyhedra, New perspectives in algebraic combinatorics (Berkeley, CA, 1996–97) Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 91–147. MR 1731815
- Johannes Buchmann, A subexponential algorithm for the determination of class groups and regulators of algebraic number fields, Séminaire de Théorie des Nombres, Paris 1988–1989, Progr. Math., vol. 91, Birkhäuser Boston, Boston, MA, 1990, pp. 27–41. MR 1104698
- J. P. Buhler, H. W. Lenstra Jr., and Carl Pomerance, Factoring integers with the number field sieve, The development of the number field sieve, Lecture Notes in Math., vol. 1554, Springer, Berlin, 1993, pp. 50–94. MR 1321221, DOI 10.1007/BFb0091539
- A. L. Chistov, The complexity of the construction of the ring of integers of a global field, Dokl. Akad. Nauk SSSR 306 (1989), no. 5, 1063–1067 (Russian); English transl., Soviet Math. Dokl. 39 (1989), no. 3, 597–600. MR 1014763
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Jesús A. De Loera, Raymond Hemmecke, Jeremiah Tauzer, and Ruriko Yoshida, Effective lattice point counting in rational convex polytopes, J. Symbolic Comput. 38 (2004), no. 4, 1273–1302. MR 2094541, DOI 10.1016/j.jsc.2003.04.003
- John R. Doyle, Xander Faber, and David Krumm, Preperiodic points for quadratic polynomials over quadratic fields, New York J. Math. 20 (2014), 507–605. MR 3218788
- U. Fincke and M. Pohst, A procedure for determining algebraic integers of given norm, Computer algebra (London, 1983) Lecture Notes in Comput. Sci., vol. 162, Springer, Berlin, 1983, pp. 194–202. MR 774811, DOI 10.1007/3-540-12868-9_{1}03
- John Jones, Number fields, http://hobbes./a.qsu.edu/NFDB/.
- A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534. MR 682664, DOI 10.1007/BF01457454
- H. W. Lenstra Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. (N.S.) 26 (1992), no. 2, 211–244. MR 1129315, DOI 10.1090/S0273-0979-1992-00284-7
- M. Ram Murty and Jeanine Van Order, Counting integral ideals in a number field, Expo. Math. 25 (2007), no. 1, 53–66. MR 2286834, DOI 10.1016/j.exmath.2006.08.001
- Victor Y. Pan, Univariate polynomials: nearly optimal algorithms for numerical factorization and root-finding, J. Symbolic Comput. 33 (2002), no. 5, 701–733. Computer algebra (London, ON, 2001). MR 1919911, DOI 10.1006/jsco.2002.0531
- A. Pethő and S. Schmitt, Elements with bounded height in number fields, Period. Math. Hungar. 43 (2001), no. 1-2, 31–41. MR 1830564, DOI 10.1023/A:1015225430108
- M. Pohst and H. Zassenhaus, Algorithmic algebraic number theory, Encyclopedia of Mathematics and its Applications, vol. 30, Cambridge University Press, Cambridge, 1997. Revised reprint of the 1989 original. MR 1483321
- Bjorn Poonen, The classification of rational preperiodic points of quadratic polynomials over $\textbf {Q}$: a refined conjecture, Math. Z. 228 (1998), no. 1, 11–29. MR 1617987, DOI 10.1007/PL00004405
- Walter Rudin, Principles of mathematical analysis, 3rd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Auckland-Düsseldorf, 1976. MR 385023
- Stephen Hoel Schanuel, Heights in number fields, Bull. Soc. Math. France 107 (1979), no. 4, 433–449 (English, with French summary). MR 557080
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
- W. A. Stein et al., Sage Mathematics Software (Version 5.9), The Sage Development Team, 2013, http://www.sagemath.org.
- Christoph Thiel, Short proofs using compact representations of algebraic integers, J. Complexity 11 (1995), no. 3, 310–329. MR 1349260, DOI 10.1006/jcom.1995.1014
Bibliographic Information
- John R. Doyle
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- MR Author ID: 993361
- ORCID: 0000-0001-6476-0605
- Email: jdoyle@math.uga.edu
- David Krumm
- Affiliation: Department of Mathematics, University of Georgia, Athens, Georgia 30602
- Email: david.krumm@gmail.com
- Received by editor(s): November 18, 2011
- Received by editor(s) in revised form: October 19, 2012, June 22, 2013, August 3, 2013, and February 25, 2014
- Published electronically: April 1, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 2867-2891
- MSC (2010): Primary 11Y16; Secondary 11Y40
- DOI: https://doi.org/10.1090/mcom/2954
- MathSciNet review: 3378851