On the absolute Mahler measure of polynomials having all zeros in a sector. III
HTML articles powered by AMS MathViewer
- by V. Flammang and G. Rhin;
- Math. Comp. 84 (2015), 2927-2938
- DOI: https://doi.org/10.1090/mcom/2959
- Published electronically: April 22, 2015
- PDF | Request permission
Abstract:
Let $\alpha$ be an algebraic integer of degree $d$, not $0$ or a root of unity, all of whose conjugates $\alpha _i$ lie in a sector $\vert \arg z \vert \leq \theta$. In 1995, G. Rhin and C. Smyth computed the greatest lower bound $c(\theta )$ of the absolute Mahler measure ( $\prod _{i=1}^d \max (1, | \alpha _i |))^{1/d}$ of $\alpha$, for $\theta$ belonging to nine subintervals of $[0, 2 \pi /3]$. More recently, in 2004, G. Rhin and Q. Wu improved the result to thirteen subintervals of $[0, \pi ]$ and extended some existing subintervals. In this paper, for the first time we find a complete subinterval where $c(\theta )$ is known exactly, as well as a fourteenth subinterval. Moreover, we slightly extend further all the existing subintervals.References
- Francesco Amoroso, $f$-transfinite diameter and number-theoretic applications, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 1179–1198 (English, with English and French summaries). MR 1252941, DOI 10.5802/aif.1368
- David W. Boyd, Variations on a theme of Kronecker, Canad. Math. Bull. 21 (1978), no. 2, 129–133. MR 485771, DOI 10.4153/CMB-1978-023-x
- David W. Boyd, Speculations concerning the range of Mahler’s measure, Canad. Math. Bull. 24 (1981), no. 4, 453–469. MR 644535, DOI 10.4153/CMB-1981-069-5
- V. Flammang, Trace of totally positive algebraic integers and integer transfinite diameter, Math. Comp. 78 (2009), no. 266, 1119–1125. MR 2476574, DOI 10.1090/S0025-5718-08-02120-0
- J. L. W. V. Jensen, Sur un nouvel et important théorème de la théorie des fonctions, Acta Math. 22 (1899), no. 1, 359–364 (French). MR 1554908, DOI 10.1007/BF02417878
- Michel Langevin, Méthode de Fekete-Szegő et problème de Lehmer, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 10, 463–466 (French, with English summary). MR 812558
- D. H. Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. (2) 34 (1933), no. 3, 461–479. MR 1503118, DOI 10.2307/1968172
- K. Mahler, On some inequalities for polynomials in several variables, J. London Math. Soc. 37 (1962), 341–344. MR 138593, DOI 10.1112/jlms/s1-37.1.341
- Georges Rhin and Christopher Smyth, On the absolute Mahler measure of polynomials having all zeros in a sector, Math. Comp. 64 (1995), no. 209, 295–304. MR 1257579, DOI 10.1090/S0025-5718-1995-1257579-6
- Georges Rhin and Qiang Wu, On the absolute Mahler measure of polynomials having all zeros in a sector. II, Math. Comp. 74 (2005), no. 249, 383–388. MR 2085898, DOI 10.1090/S0025-5718-04-01676-X
- C. J. Smyth, On the measure of totally real algebraic integers. II, Math. Comp. 37 (1981), no. 155, 205–208. MR 616373, DOI 10.1090/S0025-5718-1981-0616373-7
- Qiang Wu, On the linear independence measure of logarithms of rational numbers, Math. Comp. 72 (2003), no. 242, 901–911. MR 1954974, DOI 10.1090/S0025-5718-02-01442-4
Bibliographic Information
- V. Flammang
- Affiliation: UMR CNRS 7502. IECL, Université de Lorraine, site de Metz, Département de Mathématiques, UFR MIM, Ile du Saulcy, CS 50128, 57045 METZ cedex 01, France
- MR Author ID: 360354
- Email: valerie.flammang@univ-lorraine.fr
- G. Rhin
- Affiliation: UMR CNRS 7502. IECL, Université de Lorraine, site de Metz, Département de Mathématiques, UFR MIM, Ile du Saulcy, CS 50128, 57045 METZ cedex 01, France
- Email: georges.rhin@univ-lorraine.fr
- Received by editor(s): January 2, 2014
- Received by editor(s) in revised form: March 24, 2014
- Published electronically: April 22, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 84 (2015), 2927-2938
- MSC (2010): Primary 11R04, 12D10
- DOI: https://doi.org/10.1090/mcom/2959
- MathSciNet review: 3378854