## Rank deficiencies and bifurcation into affine subspaces for separable parameterized equations

HTML articles powered by AMS MathViewer

- by Yun-Qiu Shen and Tjalling J. Ypma PDF
- Math. Comp.
**85**(2016), 271-293 Request permission

## Abstract:

Many applications lead to separable parameterized equations of the form $F(y,\mu ,z) \equiv A(y, \mu )z+b(y, \mu )=0$, where $y \in \mathbb R^n$, $z \in \mathbb R^N$, $A(y, \mu ) \in \mathbb {R}^{(N+n) \times N}$, $b(y, \mu ) \in \mathbb {R}^{N+n}$ and $\mu \in \mathbb R$ is a parameter. Typically $N >>n$. Suppose bifurcation occurs at a solution point $(y^*,\mu ^*,z^*)$ of this equation. If $A(y^*, \mu ^*)$ is rank deficient, then the linear component $z$ bifurcates into an affine subspace at this point. We show how to compute such a point $(y,\mu ,z)$ by reducing the original system to a smaller separable system, while preserving the bifurcation, the rank deficiencies and a non-degeneracy condition. A numerical algorithm for solving the reduced system and examples illustrating the method are provided.## References

- Wolf-Jürgen Beyn,
*Numerical methods for dynamical systems*, Advances in numerical analysis, Vol. I (Lancaster, 1990) Oxford Sci. Publ., Oxford Univ. Press, New York, 1991, pp. 175–236. MR**1138474** - Shui Nee Chow and Jack K. Hale,
*Methods of bifurcation theory*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR**660633** - Shui-Nee Chow and Yun Qiu Shen,
*Bifurcations via singular value decompositions*, Appl. Math. Comput.**28**(1988), no. 3, 231–245. MR**968451**, DOI 10.1016/0096-3003(88)90139-7 - A. Dhooge, W. Govaerts, and Yu. A. Kuznetsov,
*MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs*, ACM Trans. Math. Software**29**(2003), no. 2, 141–164. MR**2000880**, DOI 10.1145/779359.779362 - A. Dhooge, W. Govaerts, Yu. A. Kuznetsov, H. G. E. Meijer, and B. Sautois,
*New features of the software MatCont for bifurcation analysis of dynamical systems*, Math. Comput. Model. Dyn. Syst.**14**(2008), no. 2, 147–175. MR**2405202**, DOI 10.1080/13873950701742754 - Eusebius Doedel,
*AUTO: a program for the automatic bifurcation analysis of autonomous systems*, Congr. Numer.**30**(1981), 265–284. MR**635945** - G. H. Golub and V. Pereyra,
*The differentiation of pseudo-inverses and nonlinear least squares problems whose variables separate*, SIAM J. Numer. Anal.**10**(1973), 413–432. MR**336980**, DOI 10.1137/0710036 - Gene Golub and Victor Pereyra,
*Separable nonlinear least squares: the variable projection method and its applications*, Inverse Problems**19**(2003), no. 2, R1–R26. MR**1991786**, DOI 10.1088/0266-5611/19/2/201 - Gene H. Golub and Charles F. Van Loan,
*Matrix computations*, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR**1417720** - Willy J. F. Govaerts,
*Numerical methods for bifurcations of dynamical equilibria*, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. MR**1736704**, DOI 10.1137/1.9780898719543 - A. Griewank and G. W. Reddien,
*Characterization and computation of generalized turning points*, SIAM J. Numer. Anal.**21**(1984), no. 1, 176–185. MR**731221**, DOI 10.1137/0721012 - Y. P. Hong and C.-T. Pan,
*Rank-revealing $QR$ factorizations and the singular value decomposition*, Math. Comp.**58**(1992), no. 197, 213–232. MR**1106970**, DOI 10.1090/S0025-5718-1992-1106970-4 - Yuri A. Kuznetsov,
*Elements of applied bifurcation theory*, Applied Mathematical Sciences, vol. 112, Springer-Verlag, New York, 1995. MR**1344214**, DOI 10.1007/978-1-4757-2421-9 - G. Lecerf,
*Quadratic Newton iteration for systems with multiplicity*, Found. Comput. Math.**2**(2002), no. 3, 247–293. MR**1907381**, DOI 10.1007/s102080010026 - Anton Leykin, Jan Verschelde, and Ailing Zhao,
*Newton’s method with deflation for isolated singularities of polynomial systems*, Theoret. Comput. Sci.**359**(2006), no. 1-3, 111–122. MR**2251604**, DOI 10.1016/j.tcs.2006.02.018 - G. G. Lukeman,
*Separable Overdetermined Nonlinear Systems: An Application of the Shen-Ypma Algorithm*, VDM Verlag Dr. Müller, Saarbrücken, 2009. - Katharine M. Mullen and Ivo H. M. van Stokkum,
*The variable projection algorithm in time-resolved spectroscopy, microscopy and mass spectrometry applications*, Numer. Algorithms**51**(2009), no. 3, 319–340. MR**2505846**, DOI 10.1007/s11075-008-9235-2 - J. D. Murray,
*Mathematical biology. II*, 3rd ed., Interdisciplinary Applied Mathematics, vol. 18, Springer-Verlag, New York, 2003. Spatial models and biomedical applications. MR**1952568** - J. M. Ortega and W. C. Rheinboldt,
*Iterative solution of nonlinear equations in several variables*, Academic Press, New York-London, 1970. MR**0273810** - P. J. Rabier and G. W. Reddien,
*Characterization and computation of singular points with maximum rank deficiency*, SIAM J. Numer. Anal.**23**(1986), no. 5, 1040–1051. MR**859016**, DOI 10.1137/0723072 - Rüdiger Seydel,
*Practical bifurcation and stability analysis*, 2nd ed., Interdisciplinary Applied Mathematics, vol. 5, Springer-Verlag, New York, 1994. From equilibrium to chaos. MR**1314200** - Y.-Q. Shen,
*Computation of a simple bifurcation point using one singular value decomposition nearby*, Computing**58**(1997), no. 4, 335–350 (English, with English and German summaries). MR**1461970**, DOI 10.1007/BF02684346 - Yun-Qiu Shen,
*Computation of a multiple bifurcation point using one singular value decomposition nearby*, Dynam. Contin. Discrete Impuls. Systems**6**(1999), no. 1, 53–68. MR**1679756** - Y.-Q. Shen and T. J. Ypma,
*Solving nonlinear systems of equations with only one nonlinear variable*, J. Comput. Appl. Math.**30**(1990), no. 2, 235–246. MR**1062327**, DOI 10.1016/0377-0427(90)90031-T - Yun-Qiu Shen and Tjalling J. Ypma,
*A unified approach to computing dynamical equilibria*, Can. Appl. Math. Q.**14**(2006), no. 3, 343–359. MR**2327749** - Yun-Qiu Shen and Tjalling J. Ypma,
*Solving rank-deficient separable nonlinear equations*, Appl. Numer. Math.**57**(2007), no. 5-7, 609–615. MR**2322434**, DOI 10.1016/j.apnum.2006.07.025 - Yun-Qiu Shen and Tjalling J. Ypma,
*Numerical bifurcation of separable parameterized equations*, Electron. Trans. Numer. Anal.**34**(2008/09), 31–43. MR**2597798** - Yun-Qiu Shen and Tjalling J. Ypma,
*Bifurcation of solutions of separable parameterized equations into lines*, Proceedings of the Eighth Mississippi State-UAB Conference on Differential Equations and Computational Simulations, Electron. J. Differ. Equ. Conf., vol. 19, Texas State Univ., San Marcos, TX, 2010, pp. 245–255. MR**2754948** - T. J. Ypma and Y.-Q. Shen,
*Solving $N+m$ nonlinear equations with only $m$ nonlinear variables*, Computing**44**(1990), no. 3, 259–271 (English, with German summary). MR**1058702**, DOI 10.1007/BF02262221

## Additional Information

**Yun-Qiu Shen**- Affiliation: Department of Mathematics, Western Washington University, Bellingham, Washington 98225-9063
- MR Author ID: 191125
- Email: yunqiu.shen@wwu.edu
**Tjalling J. Ypma**- Affiliation: Department of Mathematics, Western Washington University, Bellingham, Washington 98225-9063
- Email: tjalling.ypma@wwu.edu
- Received by editor(s): May 7, 2012
- Received by editor(s) in revised form: April 19, 2014
- Published electronically: June 2, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp.
**85**(2016), 271-293 - MSC (2010): Primary 65P30, 65H10; Secondary 37G10, 34C23
- DOI: https://doi.org/10.1090/mcom/2968
- MathSciNet review: 3404450