A mixed finite element method for Darcy’s equations with pressure dependent porosity
HTML articles powered by AMS MathViewer
- by Gabriel N. Gatica, Ricardo Ruiz-Baier and Giordano Tierra;
- Math. Comp. 85 (2016), 1-33
- DOI: https://doi.org/10.1090/mcom/2980
- Published electronically: June 8, 2015
- PDF | Request permission
Abstract:
In this work we develop the a priori and a posteriori error analyses of a mixed finite element method for Darcy’s equations with porosity depending exponentially on the pressure. A simple change of variable for this unknown allows us to transform the original nonlinear problem into a linear one whose dual-mixed variational formulation falls into the frameworks of the generalized linear saddle point problems and the fixed point equations satisfied by an affine mapping. According to the latter, we are able to show the well-posedness of both the continuous and discrete schemes, as well as the associated Cea estimate, by simply applying a suitable combination of the classical Babuška-Brezzi theory and the Banach fixed point theorem. In particular, given any integer $k \ge 0$, the stability of the Galerkin scheme is guaranteed by employing Raviart-Thomas elements of order $k$ for the velocity, piecewise polynomials of degree $k$ for the pressure, and continuous piecewise polynomials of degree $k + 1$ for an additional Lagrange multiplier given by the trace of the pressure on the Neumann boundary. Note that the two ways of writing the continuous formulation suggest accordingly two different methods for solving the discrete schemes. Next, we derive a reliable and efficient residual-based a posteriori error estimator for this problem. The global inf-sup condition satisfied by the continuous formulation, Helmholtz decompositions, and the local approximation properties of the Raviart-Thomas and Clément interpolation operators are the main tools for proving the reliability. In turn, inverse and discrete inequalities, and the localization technique based on triangle-bubble and edge-bubble functions are utilized to show the efficiency. Finally, several numerical results illustrating the good performance of both methods, confirming the aforementioned properties of the estimator, and showing the behaviour of the associated adaptive algorithm, are reported.References
- Shmuel Agmon, Lectures on elliptic boundary value problems, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR 178246
- Etienne Ahusborde, Mejdi Azaïez, Faker Ben Belgacem, and Christine Bernardi, Automatic simplification of Darcy’s equations with pressure dependent permeability, ESAIM Math. Model. Numer. Anal. 47 (2013), no. 6, 1797–1820. MR 3123377, DOI 10.1051/m2an/2013089
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg. 142 (1997), no. 1-2, 1–88. MR 1442375, DOI 10.1016/S0045-7825(96)01107-3
- A. Alonso, Error estimators for a mixed method, Numer. Math. 74 (1996), no. 4, 385–395. MR 1414415, DOI 10.1007/s002110050222
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- Mejdi Azaïez, Faker Ben Belgacem, Christine Bernardi, and Nejmeddine Chorfi, Spectral discretization of Darcy’s equations with pressure dependent porosity, Appl. Math. Comput. 217 (2010), no. 5, 1838–1856 (English, with English and French summaries). MR 2727929, DOI 10.1016/j.amc.2010.06.014
- M. Azaïez, F. Ben Belgacem, M. Grundmann, and H. Khallouf, Staggered grids hybrid-dual spectral element method for second-order elliptic problems. Application to high-order time splitting methods for Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 166 (1998), no. 3-4, 183–199. MR 1659191, DOI 10.1016/S0045-7825(98)00069-3
- Ivo Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York-London, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR 421106
- Ivo Babuška and Gabriel N. Gatica, On the mixed finite element method with Lagrange multipliers, Numer. Methods Partial Differential Equations 19 (2003), no. 2, 192–210. MR 1958060, DOI 10.1002/num.10040
- Tomás P. Barrios, Gabriel N. Gatica, María González, and Norbert Heuer, A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity, M2AN Math. Model. Numer. Anal. 40 (2006), no. 5, 843–869 (2007). MR 2293249, DOI 10.1051/m2an:2006036
- Barus, C., Isotherms, isopiestics and isometrics relative to viscosity. American Journal of Science, 45 (1893) 87–96.
- Christine Bernardi, Claudio Canuto, and Yvon Maday, Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem, SIAM J. Numer. Anal. 25 (1988), no. 6, 1237–1271. MR 972452, DOI 10.1137/0725070
- Christine Bernardi, Frédéric Hecht, and Olivier Pironneau, Coupling Darcy and Stokes equations for porous media with cracks, M2AN Math. Model. Numer. Anal. 39 (2005), no. 1, 7–35. MR 2136198, DOI 10.1051/m2an:2005007
- D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal. 33 (1996), no. 6, 2431–2444. MR 1427472, DOI 10.1137/S0036142994264079
- Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205, DOI 10.1007/978-1-4612-3172-1
- Carsten Carstensen, An a posteriori error estimate for a first-kind integral equation, Math. Comp. 66 (1997), no. 217, 139–155. MR 1372001, DOI 10.1090/S0025-5718-97-00790-4
- Carsten Carstensen, A posteriori error estimate for the mixed finite element method, Math. Comp. 66 (1997), no. 218, 465–476. MR 1408371, DOI 10.1090/S0025-5718-97-00837-5
- J. Chang, and K. B. Nakshatrala, Modification to Darcy model for high pressure and high velocity applications and associated mixed finite element formulations. arXiv:1306.5216[cs.NA]
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- M. Daadaa, Discrétisation Spectrale et par Éléments Spectraux des Équations de Darcy. Ph.D. Thesis, Université Pierre et Marie Curie, Paris (2009).
- H. Darcy, Les fontaines publiques de la ville de Dijon. Dalmont, Paris (1856).
- Marco Discacciati, Edie Miglio, and Alfio Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math. 43 (2002), no. 1-2, 57–74. 19th Dundee Biennial Conference on Numerical Analysis (2001). MR 1936102, DOI 10.1016/S0168-9274(02)00125-3
- C. Domínguez, G. N. Gatica, and S. Meddahi, A posteriori error analysis of a fully-mixed finite element method for a two-dimensional fluid-solid interaction problem. Preprint 2014-02, Centro de Investigación en Ingeniería Matemática (CI$^2$MA), Universidad de Concepción, Concepción, Chile, (2014).
- V. J. Ervin, E. W. Jenkins, and S. Sun, Coupling nonlinear Stokes and Darcy flow using mortar finite elements, Appl. Numer. Math. 61 (2011), no. 11, 1198–1222. MR 2842139, DOI 10.1016/j.apnum.2011.08.002
- Juan Galvis and Marcus Sarkis, Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations, Electron. Trans. Numer. Anal. 26 (2007), 350–384. MR 2391227
- Gabriel N. Gatica, A simple introduction to the mixed finite element method, SpringerBriefs in Mathematics, Springer, Cham, 2014. Theory and applications. MR 3157367, DOI 10.1007/978-3-319-03695-3
- Gabriel N. Gatica, Luis F. Gatica, and Antonio Márquez, Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow, Numer. Math. 126 (2014), no. 4, 635–677. MR 3175180, DOI 10.1007/s00211-013-0577-x
- Gabriel N. Gatica, George C. Hsiao, and Salim Meddahi, A residual-based a posteriori error estimator for a two-dimensional fluid-solid interaction problem, Numer. Math. 114 (2009), no. 1, 63–106. MR 2557870, DOI 10.1007/s00211-009-0250-6
- Gabriel N. Gatica and Matthias Maischak, A posteriori error estimates for the mixed finite element method with Lagrange multipliers, Numer. Methods Partial Differential Equations 21 (2005), no. 3, 421–450. MR 2128589, DOI 10.1002/num.20050
- Gabriel N. Gatica, Salim Meddahi, and Ricardo Oyarzúa, A conforming mixed finite-element method for the coupling of fluid flow with porous media flow, IMA J. Numer. Anal. 29 (2009), no. 1, 86–108. MR 2470941, DOI 10.1093/imanum/drm049
- Gabriel N. Gatica, Ricardo Oyarzúa, and Francisco-Javier Sayas, Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem, Math. Comp. 80 (2011), no. 276, 1911–1948. MR 2813344, DOI 10.1090/S0025-5718-2011-02466-X
- Vivette Girault, François Murat, and Abner Salgado, Finite element discretization of Darcy’s equations with pressure dependent porosity, M2AN Math. Model. Numer. Anal. 44 (2010), no. 6, 1155–1191. MR 2769053, DOI 10.1051/m2an/2010019
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- V. Girault and M. F. Wheeler, Numerical discretization of a Darcy-Forchheimer model, Numer. Math. 110 (2008), no. 2, 161–198. MR 2425154, DOI 10.1007/s00211-008-0157-7
- Ohannes A. Karakashian, On a Galerkin-Lagrange multiplier method for the stationary Navier-Stokes equations, SIAM J. Numer. Anal. 19 (1982), no. 5, 909–923. MR 672567, DOI 10.1137/0719066
- Trygve Karper, Kent-Andre Mardal, and Ragnar Winther, Unified finite element discretizations of coupled Darcy-Stokes flow, Numer. Methods Partial Differential Equations 25 (2009), no. 2, 311–326. MR 2483769, DOI 10.1002/num.20349
- J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications I. Dunod, Paris, 1968.
- A. Márquez, S. Meddahi, and F.-J. Sayas, Strong coupling of finite element methods for the Stokes-Darcy problem. IMA Journal of Numerical Analysis (2014) doi: 10.1093/imanum/dru023.
- William McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000. MR 1742312
- K. B. Nakshatrala and K. R. Rajagopal, A numerical study of fluids with pressure-dependent viscosity flowing through a rigid porous medium, Internat. J. Numer. Methods Fluids 67 (2011), no. 3, 342–368. MR 2835720, DOI 10.1002/fld.2358
- K. B. Nakshatrala and D. Z. Turner, A mixed formulation for a modification to Darcy equation based on Picard linearization and numerical solutions to large-scale realistic problems, Int. J. Comput. Methods Eng. Sci. Mech. 14 (2013), no. 6, 524–541. MR 3172099, DOI 10.1080/15502287.2013.822942
- J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques. Mason, Paris, 1967.
- Hao Pan and Hongxing Rui, Mixed element method for two-dimensional Darcy-Forchheimer model, J. Sci. Comput. 52 (2012), no. 3, 563–587. MR 2948707, DOI 10.1007/s10915-011-9558-3
- Eun-Jae Park, Mixed finite element methods for generalized Forchheimer flow in porous media, Numer. Methods Partial Differential Equations 21 (2005), no. 2, 213–228. MR 2114948, DOI 10.1002/num.20035
- Siegfried Prössdorf and Bernd Silbermann, Numerical analysis for integral and related operator equations, Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], vol. 84, Akademie-Verlag, Berlin, 1991 (English, with English and German summaries). MR 1206476
- K. R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solids, Math. Models Methods Appl. Sci. 17 (2007), no. 2, 215–252. MR 2292356, DOI 10.1142/S0218202507001899
- Béatrice Rivière and Ivan Yotov, Locally conservative coupling of Stokes and Darcy flows, SIAM J. Numer. Anal. 42 (2005), no. 5, 1959–1977. MR 2139232, DOI 10.1137/S0036142903427640
- J. E. Roberts and J.-M. Thomas, Mixed and hybrid methods, Handbook of numerical analysis, Vol. II, Handb. Numer. Anal., II, North-Holland, Amsterdam, 1991, pp. 523–639. MR 1115239
- S. Srinivasan, A. Bonito, and K. R. Rajagopal, Flow of a fluid through a porous solid due to high pressure gradients. Journal of Porous Media, 16(3) (2013) 193–203.
- S. Srinivasan and K. R. Rajagopal, A thermodynamic basis for the derivation of the Darcy, Forchheimer and Brinkman models for flows through porous media and their generalizations, International Journal of Nonlinear Mechanics, 58 (2014) 162–166.
- R. Verfürth, A posteriori error estimators for the Stokes equations, Numer. Math. 55 (1989), no. 3, 309–325. MR 993474, DOI 10.1007/BF01390056
- R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), 1994, pp. 67–83. MR 1284252, DOI 10.1016/0377-0427(94)90290-9
- R. Verfürth, A Review of A-Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, John Wiley and Teubner Series, Advances in Numerical Mathematics 1996.
- Xiaoping Xie, Jinchao Xu, and Guangri Xue, Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models, J. Comput. Math. 26 (2008), no. 3, 437–455. MR 2421892
Bibliographic Information
- Gabriel N. Gatica
- Affiliation: CI$^2$MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- Email: ggatica@ci2ma.udec.cl
- Ricardo Ruiz-Baier
- Affiliation: Institute of Earth Sciences, Quartier UNIL-Mouline, Bâtiment Géopolis, University of Lausanne, CH-1015 Lausanne, Switzerland
- Email: ricardo.ruizbaier@unil.ch
- Giordano Tierra
- Affiliation: Mathematical Institute, Faculty of Mathematics and Physics, Charles University in Prague, Prague 8, 186 75, Czech Republic
- Email: gtierra@karlin.mff.cuni.cz
- Received by editor(s): February 18, 2014
- Received by editor(s) in revised form: June 11, 2014, and July 21, 2014
- Published electronically: June 8, 2015
- Additional Notes: The work of the first author was partially supported by CONICYT-Chile through BASAL project CMM, Universidad de Chile, and project Anillo ACT1118 (ANANUM); by the ministry of Education through the project REDOC.CTA of the Graduate School, Universidad de Concepción; and by Centro de Investigación en Ingeniería Matemática (CI$^2$MA), Universidad de Concepción
The work of the second author was partially supported by the University of Lausanne and by the Swiss National Science Foundation through grant PPOOP2-144922
The work of the third author was partially supported by the Ministry of Education, Youth and Sports of the Czech Republic through the ERC-CZ project LL1202. Part of this research was developed while this author was visiting CI$^2$MA during the last three weeks of January 2014 - © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 1-33
- MSC (2010): Primary 65N15, 65N30, 74F10, 74S05
- DOI: https://doi.org/10.1090/mcom/2980
- MathSciNet review: 3404441