An explicit density estimate for Dirichlet $L$-series
HTML articles powered by AMS MathViewer
- by O. Ramaré;
- Math. Comp. 85 (2016), 325-356
- DOI: https://doi.org/10.1090/mcom/2991
- Published electronically: June 3, 2015
- PDF | Request permission
Abstract:
We prove that, for $T\ge 2\,000$, $T\ge Q\ge 10$, and $\sigma \ge 0.52$, we have \begin{equation*} \sum _{q\le Q}\mkern -2mu \frac {q}{\varphi (q)}\mkern -6mu \sum _{\chi \operatorname {mod}^* q}\mkern -12mu N(\sigma ,T,\chi ) \!\le \! 20\bigl (56\,Q^{5}T^3\bigr )^{1-\sigma }\log ^{5-2\sigma }(Q^2T) \!+\!32\,Q^2\log ^2(Q^2T), \end{equation*} where $\chi \operatorname {mod}^* q$ denotes a sum over all primitive Dirichlet characters $\chi$ to the modulus $q$. Furthermore, we have \begin{equation*} N(\sigma ,T,\mathbb {1} )\le 2T \log \biggl (1+\frac {9.8}{2T}(3T)^{8(1-\sigma )/{3}}\log ^{5-2\sigma }(T)\biggr ) \!+\!103(\log T)^2. \end{equation*}References
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, DC, 1964. For sale by the Superintendent of Documents. MR 167642
- Roland Bacher, Determinants related to Dirichlet characters modulo 2, 4 and 8 of binomial coefficients and the algebra of recurrence matrices, Internat. J. Algebra Comput. 18 (2008), no. 3, 535–566. MR 2422072, DOI 10.1142/S021819670800455X
- R. Balasubramanian, B. Calado, and H. Queffélec, The Bohr inequality for ordinary Dirichlet series, Studia Math. 175 (2006), no. 3, 285–304. MR 2261747, DOI 10.4064/sm175-3-7
- P. Barrucand and F. Laubie, Sur les symboles des restes quadratiques des discriminants, Acta Arith. 48 (1987), no. 1, 81–88 (French). MR 893464, DOI 10.4064/aa-48-1-81-88
- G. Bastien and M. Rogalski, Convexité, complète monotonie et inégalités sur les fonctions zêta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques, Canad. J. Math. 54 (2002), no. 5, 916–944 (French, with English and French summaries). MR 1924708, DOI 10.4153/CJM-2002-034-7
- Frédéric Bayart, Catherine Finet, Daniel Li, and Hervé Queffélec, Composition operators on the Wiener-Dirichlet algebra, J. Operator Theory 60 (2008), no. 1, 45–70. MR 2415556
- Michael A. Bennett, Rational approximation to algebraic numbers of small height: the Diophantine equation $|ax^n-by^n|=1$, J. Reine Angew. Math. 535 (2001), 1–49. MR 1837094, DOI 10.1515/crll.2001.044
- H. Bohr and E. Landau, Sur les zéros de la fonction $\zeta (s)$ de Riemann., C. R. 158 (1914), 106–110 (French).
- Enrico Bombieri, Le grand crible dans la théorie analytique des nombres, Astérisque 18 (1987), 103 (French, with English summary). MR 891718
- Jing Run Chen, On zeros of Dirichlet’s $L$ functions, Sci. Sinica Ser. A 29 (1986), no. 9, 897–913. MR 869195
- Yuanyou F. Cheng and Sidney W. Graham, Explicit estimates for the Riemann zeta function, Rocky Mountain J. Math. 34 (2004), no. 4, 1261–1280. MR 2095256, DOI 10.1216/rmjm/1181069799
- Henri Cohen and François Dress, Estimations numériques du reste de la fonction sommatoire relative aux entiers sans facteur carré, Colloque de Théorie Analytique des Nombres “Jean Coquet” (Marseille, 1985) Publ. Math. Orsay, vol. 88, Univ. Paris XI, Orsay, 1988, pp. 73–76 (French). MR 952866
- J. B. Conrey, At least two-fifths of the zeros of the Riemann zeta function are on the critical line, Bull. Amer. Math. Soc. (N.S.) 20 (1989), no. 1, 79–81. MR 959210, DOI 10.1090/S0273-0979-1989-15704-2
- J.-M. Deshouillers and H. Iwaniec, Power mean-values for Dirichlet’s polynomials and the Riemann zeta-function. II, Acta Arith. 43 (1984), no. 3, 305–312. MR 738142, DOI 10.4064/aa-43-3-305-312
- P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Ph.D. thesis, Limoges, http\string ://www.unilim.fr/laco/theses/1998/T1998_01.pdf, 1998, 173 pp.
- Pierre Dusart, Inégalités explicites pour $\psi (X)$, $\theta (X)$, $\pi (X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 2, 53–59 (French, with English and French summaries). MR 1697455
- P. Dusart, Estimates of some functions over primes without R. H., http://arxiv.org/abs/1002.0442 (2010).
- Pierre Dusart, Inégalités explicites pour $\psi (X)$, $\theta (X)$, $\pi (X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 2, 53–59 (French, with English and French summaries). MR 1697455
- Sumaia Saad Eddin, Explicit upper bounds for the Stieltjes constants, J. Number Theory 133 (2013), no. 3, 1027–1044. MR 2997785, DOI 10.1016/j.jnt.2012.09.001
- L. Faber and H. Kadiri, New bounds for $\psi (x)$, preprint (2013), 15pp.
- Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann, MPFR: a multiple-precision binary floating-point library with correct rounding, ACM Trans. Math. Software 33 (2007), no. 2, Art. 13, 15. MR 2326955, DOI 10.1145/1236463.1236468
- P. X. Gallagher, A large sieve density estimate near $\sigma =1$, Invent. Math. 11 (1970), 329–339. MR 279049, DOI 10.1007/BF01403187
- X. Gourdon, The $10^{13}$ first zeros of the Riemann Zeta Function and zeros computations at very large height, http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf (2004).
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 6th ed., Academic Press, Inc., San Diego, CA, 2000. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. MR 1773820
- Andrew Granville and Olivier Ramaré, Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), no. 1, 73–107. MR 1401709, DOI 10.1112/S0025579300011608
- G. H. Hardy, A. E. Ingham, and G. Pólya, Theorems concerning mean values of analytic functions, Proceedings Royal Soc. London (A) 113 (1927), 542–569 (English).
- H. A. Helfgott, Minor arcs for Goldbach’s problem, Submitted (2012), arXiv:1205.5252.
- H. A. Helfgott, Major arcs for Goldbach’s theorem, Submitted (2013), arXiv:1305.2897.
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- Habiba Kadiri, A zero density result for the Riemann zeta function, Acta Arith. 160 (2013), no. 2, 185–200. MR 3105334, DOI 10.4064/aa160-2-6
- Manfred Kolster and Thong Nguyen Quang Do, Syntomic regulators and special values of $p$-adic $L$-functions, Invent. Math. 133 (1998), no. 2, 417–447. MR 1632798, DOI 10.1007/s002220050250
- J. E. Littlewood, On the zeros of the Riemann Zeta-function, Cambr. Phil. Soc. Proc. 22 (1924), 295–318 (English).
- Ming-Chit Liu and Tianze Wang, Distribution of zeros of Dirichlet $L$-functions and an explicit formula for $\psi (t,\chi )$, Acta Arith. 102 (2002), no. 3, 261–293. MR 1884719, DOI 10.4064/aa102-3-5
- Ming-Chit Liu and Tianze Wang, On the Vinogradov bound in the three primes Goldbach conjecture, Acta Arith. 105 (2002), no. 2, 133–175. MR 1932763, DOI 10.4064/aa105-2-3
- Kevin S. McCurley, Explicit estimates for the error term in the prime number theorem for arithmetic progressions, Math. Comp. 42 (1984), no. 165, 265–285. MR 726004, DOI 10.1090/S0025-5718-1984-0726004-6
- H. L. Montgomery and R. C. Vaughan, Hilbert’s inequality, J. London Math. Soc. (2) 8 (1974), 73–82. MR 337775, DOI 10.1112/jlms/s2-8.1.73
- Sadegh Nazardonyavi and Semyon Yakubovich, Another proof of Spira’s inequality and its application to the Riemann hypothesis, J. Math. Inequal. 7 (2013), no. 2, 167–174. MR 3099609, DOI 10.7153/jmi-07-16
- The PARI Group, Bordeaux, PARI/GP, version 2.5.2, 2011, http://pari.math.u-bordeaux.fr/.
- D. J. Platt, Computing degree 1 L-function rigorously, Ph.D. thesis, Mathematics, 2011, arXiv:1305.3087.
- E. Preissmann, Sur une inégalité de Montgomery-Vaughan, Enseign. Math. (2) 30 (1984), no. 1-2, 95–113 (French). MR 743672
- Hans Rademacher, On the Phragmén-Lindelöf theorem and some applications, Math. Z. 72 (1959/60), 192–204. MR 117200, DOI 10.1007/BF01162949
- Olivier Ramaré, On Šnirel′man’s constant, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), no. 4, 645–706. MR 1375315
- Olivier Ramaré, Explicit estimates on the summatory functions of the Möbius function with coprimality restrictions, Acta Arith. 165 (2014), no. 1, 1–10. MR 3263938, DOI 10.4064/aa165-1-1
- G. Ricotta, Real zeros and size of Rankin-Selberg $L$-functions in the level aspect, Duke Math. J. 131 (2006), no. 2, 291–350. MR 2219243, DOI 10.1215/S0012-7094-06-13124-1
- Robert Rumely, Numerical computations concerning the ERH, Math. Comp. 61 (1993), no. 203, 415–440, S17–S23. MR 1195435, DOI 10.1090/S0025-5718-1993-1195435-0
- Lowell Schoenfeld, An improved estimate for the summatory function of the Möbius function, Acta Arith. 15 (1968/69), 221–233. MR 241376, DOI 10.4064/aa-15-3-221-233
- Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$. II, Math. Comp. 30 (1976), no. 134, 337–360. MR 457374, DOI 10.1090/S0025-5718-1976-0457374-X
- Robert Spira, Calculation of Dirichlet $L$-functions, Math. Comp. 23 (1969), 489–497. MR 247742, DOI 10.1090/S0025-5718-1969-0247742-X
- W. A. Stein et al., Sage Mathematics Software (Version 5.9), The Sage Development Team, 2013, http://www.sagemath.org.
- Terence Tao, Every odd number greater than $1$ is the sum of at most five primes, Math. Comp. 83 (2014), no. 286, 997–1038. MR 3143702, DOI 10.1090/S0025-5718-2013-02733-0
- E. C. Titchmarsh, The Theory of Riemann Zeta Function, Oxford Univ. Press, Oxford 1951, 1951.
- Timothy S. Trudgian, An improved upper bound for the argument of the Riemann zeta-function on the critical line II, J. Number Theory 134 (2014), 280–292. MR 3111568, DOI 10.1016/j.jnt.2013.07.017
- S. Wedeniwski, On the Riemann hypothesis, http://www.zetagrid.net (2009).
Bibliographic Information
- O. Ramaré
- Affiliation: Laboratoire Paul Painlevé / CNRS, Université Lille 1, 59655 Villeneuve d’Ascq, France
- MR Author ID: 360330
- Email: ramare@math.univ-lille1.fr
- Received by editor(s): September 5, 2013
- Received by editor(s) in revised form: June 13, 2013, and July 5, 2014
- Published electronically: June 3, 2015
- © Copyright 2015 American Mathematical Society
- Journal: Math. Comp. 85 (2016), 325-356
- MSC (2010): Primary 11P05, 11Y50; Secondary 11B13
- DOI: https://doi.org/10.1090/mcom/2991
- MathSciNet review: 3404452